

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited.

CONVERGENCE OF THE NAVAL INFORMATION
INFRASTRUCTURE

by

James A. Knoll

June 2004

 Thesis Advisor: William Ray
 Second Reader: David Floodeen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Convergence of the Naval Information Infrastructure

6. AUTHOR(S) James A. Knoll

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Converging voice and data networks has the potential to save money and is the
main reason Voice over Internet Protocol (VoIP) is quickly becoming mainstream
in corporate America. The potential VoIP offers to more efficiently utilize
the limited connectivity available to ships at sea makes it an attractive
option for the Navy. This thesis investigates the usefulness of VoIP for the
communications needs of a unit level ship. This investigation begins with a
review of what VoIP is and then examines the ship to shore connectivity for a
typical unit level ship. An OMNeT++ model was developed and used to examine
the issues that affect implementing VoIP over this type of link and the
results are presented.

15. NUMBER OF
PAGES

279

14. SUBJECT TERMS
Voice over IP (VoIP), ADNS, OMNET++, Convergence, Satellite
Communications, Networks, Simulation

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

CONVERGENCE OF THE NAVAL INFORMATION INFRASTRUCTURE

James A. Knoll
Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2004

Author: James A. Knoll

Approved by: William Ray
 Thesis Advisor

 David Floodeen
 Second Reader

 Peter Denning
 Chairman, Department of Computer

 Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Converging voice and data networks has the potential

to save money and is the main reason Voice over Internet

Protocol (VoIP) is quickly becoming mainstream in corporate

America. The potential VoIP offers to more efficiently

utilize the limited connectivity available to ships at sea

makes it an attractive option for the Navy. This thesis

investigates the usefulness of VoIP for the communications

needs of a unit level ship. This investigation begins with

a review of what VoIP is and then examines the ship to

shore connectivity for a typical unit level ship. An

OMNeT++ model was developed and used to examine the issues

that affect implementing VoIP over this type of link and

the results are presented.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. WHAT IS CONVERGENCE1
B. THE CASE FOR VOIP1
C. VOIP CONSIDERATIONS2
D. US NAVY VOIP3

II. BACKGROUND ..5
A. BRIEF HISTORY OF THE PSTN5
B. BUSINESS TELEPHONY7

III. HOW VOICE OVER INTERNET PROTOCOL (VOIP) WORKS11
A. PLACING A CALL11
B. NETWORK DATA TRANSPORT12
C. VOIP AT THE NODE LEVEL13

1. Internet Engineering Taskforce (IETF)14
2. International Telecommunications Union (ITU) .15

IV. CHALLENGES OF VOIP19
A. VOICE QUALITY19
B. DELAY ...20
C. JITTER ..22
D. LOST PACKETS22

V. THE NAVY VOIP IMPLEMENTATION25
A. THE AUTOMATED DIGITAL NETWORK SYSTEM25
B. TECHNICAL CONSIDERATIONS TO THE VOIP

IMPLEMENTATION26
1. Delay ..26
2. Jitter27
3. Packet Loss27

C. TWO POSSIBLE IMPLEMENTATIONS28
1. Direct VoIP Implementation28
2. An Alternative VoIP Implementation29

VI. MODEL DEVELOPMENT31
A. TOOL SELECTION31
B. MODEL DEVELOPMENT32
C. INTERMEADIATE MODELS36

1. Frame Size36
2. Impact of TCP Congestion Control38

VII. RESULTS AND CONCLUSIONS45
A. DIRECT IMPLEMENTATION OF VOIP45
B. ALTERNATIVE VOIP IMPLEMENTATION47
C. CONCLUSIONS48

 viii

D. FUTURE WORK49
APPENDIX A. GLOSSARY51
APPENDIX B. SIMULATION CODE59

A. CHANGES TO IPSUITE SOURCE59
B. COMPONENTS ..69
C. NETWORKS ...188

BIBLIOGRAPHY ...265
INITIAL DISTRIBUTION LIST267

 ix

LIST OF FIGURES

Figure 1: Physical Cable Between all Telephone Users
(From Davidson & Peters, 2000)5

Figure 2: The VoIP Call Process (From Caputo, 2000)12
Figure 3: Protocols related to Voice over IP (From

Miller, 2002)15
Figure 4: H.323 Protocol Stack (After Black, 2000)16
Figure 5: Comparison of Compression Techniques (After

Caputo, 2000)20
Figure 6: Simplified Block Diagram of ADNS (After

Buddenburg, 2003)26
Figure 7: Current ADNS Ship Configuration (From Casey,

2004) ...28
Figure 8: Black ADNS Ship Configuration (From Casey,

2004) ...29
Figure 9: VoIP network with INEs36
Figure 10: Effect of frame size on CODEC performance37
Figure 11: TCP Client Network39
Figure 12: Data Rate for network with 18 Clients40
Figure 13: Data Rate for Network with 3 Clients41
Figure 14: Data Rate for Network with 1 Client42
Figure 15: Network for Determining VoIP Transition

Efficiency43
Figure 16: Effects of call cycle on VoIP Implementation .45
Figure 17: Upgraded 128K INMARSAT47
Figure 18: Black Voice Routing48

 x

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. WHAT IS CONVERGENCE

Convergence is the integration of voice, data, video,

or any other imaginable multimedia communication onto a

single transmission media. This may seem like a lofty and

futuristic goal, but the ideas of convergence are not new.

Convergence has been talked about since the 1980’s when

Integrated Services Digital Network (ISDN) was first

introduced for sharing a transmission line between data and

voice. Additionally, in the 1990’s, the phone companies

underwent a major upgrade to their backbone systems. They

transitioned to packetized voice on their trunks in order

to more efficiently utilize available bandwidth. The

potential that VoIP offers to more efficiently utilize the

limited connectivity available to ships at sea makes it an

attractive option for the Navy. In recent years, a renewed

emphasis on convergence has been seen in the form of Voice

over Internet Protocol (VoIP). VoIP refers to the

transmission of packetized voice traffic on a network

traditionally designed for data. VoIP provides Phone-to-

Phone, PC-to-PC, PC-to-Phone, Phone-to-PC and fax-to-fax

services. VoIP is often used synonymously with the terms

Internet telephony, IP telephony and packetized voice.

B. THE CASE FOR VOIP

The number one driving factor behind most new

technology is cost savings. The efficiency of VoIP makes

it very cost effective for use in industry. Significant

savings are realized when toll calls are transported via an

internet or the Internet1. Many organizations, DoD

1 The term internet (with a lower case i) in general refers to the

connection of any two or more separate networks. The term Internet

2

included, save money by leasing connections used to provide

dedicated communications. These leased connections are

broken into 64kbit/s ISDN channels. Each channel is

dedicated as either voice or data. Given that a normal

conversation contains approximately 50% silence, 50% of the

bandwidth dedicated to a voice channel is wasted. Data

transmission is also ‘bursty’ in nature. Considerable

bandwidth is wasted between data transmissions. By

combining the two kinds of traffic, the burst nature of

both can be exploited. Both types of traffic can then

travel over one line. This can be translated into cost

savings by using one dedicated line for both types of

traffic vice having one line for voice and another for

data.

Further savings come from the reduction of maintenance

costs associated with the infrastructure of two disparate

networks. In a traditional installation using Plain Old

Telephone Service (POTS), separate organizations are

required to maintain the data network and the Private

Branch Exchange (PBX). Converging the voice and data

networks would idealistically eliminate the entire

infrastructure associated with the legacy phone system

because all phone calls would travel over the data network.

In reality, specialty VoIP equipment will be required but

still the overall size of the resulting organization will

be significantly reduced.

C. VOIP CONSIDERATIONS

In simple terms, convergence is good because it saves

money; however, cost savings alone is not always enough to

convince industry to fully embrace a new technology. Many

(with a capital I) refers to the specific entity that is publicly
accessible and comprised of networks worldwide.

3

times the quality of the services provided are as important

as cost savings. For VoIP to be widely accepted and used,

the quality of VoIP service provided must be at least as

good at those currently provided by the Public Switched

Telephone Network (PSTN). Jitter and delay are often sited

as potential problems in the quality of VoIP and need to be

addressed. Also, users have grown accustomed to many

advanced features provided by the PSTN. These include

convenience features such as Call Waiting, Caller ID, and

Call Transfer, safety features such as Enhanced 911, and

Military Unique Features such as Multi-level Precedence and

Preemption (MLPP). All of these must be incorporated as

VoIP evolves. Finally, VoIP must be compatible with

existing data-over-voice applications such as Modems, Fax,

and STU/STE.

D. US NAVY VOIP

For the US Navy, convergence is not an easy task to

undertake. In contrast to most other organizations, a good

portion of the Navy is unable to communicate with the rest

of the world via terrestrial cables. The unique issues

associated with shipboard communications while at sea must

be considered when designing any system for use by the

fleet. Currently, communication for the majority of the

fleet is via low bandwidth connections used for both voice

and data. The INMARSAT system was introduced with the

intent of meeting emerging communications needs of the unit

level ships in the fleet. The problem is that applications

designed for shore based use, where bandwidth is less of an

issue, have been incorporated for use at sea. The current

bandwidth needs of the unit level ships exceed the capacity

of the INMARSAT system in its current configuration. This

4

thesis created and developed models used to investigate

VoIP in a Navy environment.

Implementing VoIP on a satellite communications system

is not an easy task. Problems that affect a high-speed

terrestrial network are compounded when a satellite is in

the communications path. The delay alone, approximately

500ms for a single trip to and from a satellite, is outside

of the conventional norm for voice communications.

Therefore, the effects of low bandwidth, high latency

communications must be considered in the evaluation of

VoIP. This investigation begins with a review of what VoIP

is and then examines the ship to shore connectivity for a

typical unit level Navy ship. A model is then used to

examine several issues associated with implementing VoIP

over this type of link and the results are presented.

5

II. BACKGROUND

VoIP merges the technologies and features of the

Public Switched Telephone Network (PSTN) and business

telephony systems with computer networking. To truly

understand how VoIP evolved, it is important to first

review each of these systems. This chapter will begin with

a brief history of the PSTN and then covers current types

of business telephony systems. The networking aspects of

VoIP and the terms used to describe them will be discussed

in Chapter III.

A. BRIEF HISTORY OF THE PSTN

In 1876, Alexander Graham Bell made the first voice

transmission over an electrical wire. This first

transmission was between two locations connected via a

single wire. In the early days of the telephone, each user

had to be directly connected to every other user. Figure 1

shows the direct connection of eight telephones.

Figure 1: Physical Cable Between all Telephone Users
(From Davidson & Peters, 2000)

6

The number of connections required can be determined

by the following equation:

of connections = n(n-1)/2

where n is the number of users in the system

For this system with eight users, 28 connections are

required. As n increases, this system can quickly become

unwieldy and quite costly.

The solution to this problem was to create a switch.

All of the physical lines were run to a central location

and an operator routed the calls by using a patch cord to

physically connect users to each other. Since the switches

could be connected to other switches, telephone networks

could be scaled up to cover a greater geographic area. In

the 1890’s, an advance in switching technology enabled

switch-to-switch calling without an operator. However,

well into the second half of the 20th century, many calls

were still patched by hand. (Farley, 2004)

Over the years, many advances have been made to

enhance the telephone networks. In 1937, multiplexing of

analog signals was introduced. For the first time,

multiple calls could be carried on a single transmission

line. The impact was as profound as the invention of the

switch. This allowed fewer cables to be run and reduced

overall system cost. A further enhancement occurred in

1963 with the introduction of digital transmission

techniques. These digital techniques are the basis for the

infrastructure in use today.

7

The current state of the telephone industry is mixed.

Although operator switched calls are a thing of the past,

many analog switches are still used on the periphery of the

updated digital backbone. Those areas still using analog

switches do not get any of the benefits associated with

digital systems.

This digital technology has enabled the modern PSTN to

be characterized by advanced digital features such as

Caller Id, Call Waiting, Voice Mail, and other services.

Audible delays, once common for long distance calls, have

been greatly reduced or in most cases eliminated as calls

are now transmitted at the speed of light. These services

have become commonplace and must be accommodated by any new

technology.

B. BUSINESS TELEPHONY

Today’s business telephone system is similar in

structure yet more plentiful in features than the PSTN.

These systems can be classified as one of five types.

These are the simple business line, the Centrex line, the

Virtual Private Network (VPN), the Private Branch Exchange

(PBX), and the Key-system. (Davidson, 2000)

The simplest business telephone system is the business

line. Provided by a Local Exchange Carrier (LEC), the

business line is usually charged at a higher rate but is

essentially the same as a residential line. It is used by

small businesses that do not require a large number of

features or a large number of users.

Also available from the Local Exchange Carrier (LEC)

is the Centrex line. This type of system would be used by

a small business that needs additional features not

available from a regular business line. The phones are

8

grouped into a Closed User Group (CUG). This CUG provides

the business with features such as call transfer, call

waiting and call groups.

A step up from the Centrex is the third type of

business system, the Virtual Private Network (VPN). The

VPN allows the user to treat geographically dispersed sites

as a Closed User Group (CUG). This system is best suited

for a medium sized business like a department store where

there are several different geographic locations but still

not a large volume of calls. It allows separate sites to

be connected without the overhead maintenance costs

associated with systems that are more complex.

The Private Branch Exchange (PBX) is by far the most

common phone system used in business today. The PBX gives

the company complete control over the system configuration.

A business that has a higher ratio of internal calls to

external calls can purchase fewer PSTN trunks

(connections). If the internal calls go to separate

locations, tie-lines can be purchased to create permanent

connections thus reducing long distance charges.

The fifth system is known as the Key-system. It is

similar to the PBX but generally used by businesses with

fewer than 50 phones. A Key-system costs less than a PBX,

in both initial setup and maintenance, but lacks the

ability to expand the way a PBX system can. This lack of

expansion capability means a business must be fairly stable

and able to predict its future needs when purchasing a Key-

system.

As previously mentioned, many of the features and

functions of the Public Switched Telephone Network (PSTN)

9

and the business telephony systems used today have

contributed to the makeup of VoIP. Users of these systems

have expectations for quality that need to be present in

VoIP. VoIP, however, is deeply rooted in computer network

technology as well. The next chapter explains the basics

of how VoIP works in network terms.

10

THIS PAGE INTENTIONALLY LEFT BLANK

11

III. HOW VOICE OVER INTERNET PROTOCOL (VOIP) WORKS

Describing how VoIP works is a difficult task. There

are two (2) major governing bodies that have published

different standards and recommendations on how VoIP should

be implemented. The Internet Engineering Task Force (IETF)

has addressed the issue from a network communications point

of view where the International Telecommunications Union

(ITU) has published more along the lines of telephone

systems technology. These different approaches do have

several overlapping or common components but also have some

incompatible parts as well. Placing a VoIP call from a

high-level point of view and data transport from the

network-level point of view are common to both sets of

protocols. Node-level implementation is where the two

differ. This chapter will begin by presenting the high

level view of placing a VoIP call followed by a description

of data transport at the network level. Finally, a

description of the two differing node level implementations

is presented.

A. PLACING A CALL

When placing a call using VoIP, the dial tone, touch-

tone, ringing, and busy signals are all emulated by a

terminal or gatekeeper. When a number is dialed, it is

mapped to the IP address of the phone to be called. A call

setup protocol is then used. The actual set up will depend

on which of the two governing bodies’ protocols are used.

The setup protocol locates the phone to be called and once

found, sends a signal to produce a ring. When the

receiving handset is picked up, voice is digitized via an

analog-to-digital converter (ADC), packetized, encapsulated

12

into IP datagrams, and sent across the network. At the

receiving end, the IP encapsulation is stripped, the data

stream is reassembled, and the digital signal is converted

to voice via a digital-to-analog converter (DAC). Figure 2

shows this call process.

Figure 2: The VoIP Call Process (From Caputo, 2000)

B. NETWORK DATA TRANSPORT

Once a connection is established in the call process,

data is then transported across the network. As mentioned

above, the method of data transport is the same regardless

of which governing bodies’ protocols or standards are being

13

used. Data transport actually begins with packetizing data

in accordance with a CODEC. A CODEC or coder/decoder is a

standard method for encoding and compressing data. Several

different CODECs are currently used for voice transmission.

These CODECs are defined in standards published by the

International Telecommunications Union (ITU).

The data is then encapsulated in a Real-time Transport

Protocol (RTP) (RFC 1889) datagram. RTP is used with other

protocols to provide transport for real-time data such as

voice or video. The RTP header contains sequencing, time

stamping, and content information. This datagram is

usually transported via User Datagram Protocol (UDP) (RFC

768). The UDP datagrams are then encapsulated into

Internet Protocol (IP) (RFC 791) datagrams that are used to

route the information to the desired destination. At the

destination, each layer is stripped until the voice data

stream can be reassembled.

C. VOIP AT THE NODE LEVEL

Implementing VoIP at the node level is very different

depending on which governing bodies’ protocols are used by

the equipment manufacturer. These different

implementations are not compatible with each other so it is

important to know which is being used. Some manufacturers

of VoIP equipment will include the capability to interface

using protocols from either governing body but this is not

always the case. This section describes the different sets

of protocols from each governing body. A system based on

the IETF recommendations is presented first followed by a

system described using the ITU standards.

14

1. Internet Engineering Taskforce (IETF)

The Internet Engineering Task Force (IETF) is the

governing body responsible for recommending standards for

the Internet. As such the recommendations for VoIP tend to

be rooted in networking fundamentals. The following is an

example of a typical call using terms from the IETF

framework:

A User Agent is the software that interfaces with and

acts on behalf of the user. The user agent uses the

Session Initiation Protocol (SIP) (RFC 2543 found on Figure

3) to initiate a call. SIP is used to establish, modify,

or end a VoIP session. The User Agent will use SIP to

contact either a proxy server or a redirect server. The

Proxy Server will act on behalf of the User Agent and

forward an address request to the next node while the

Redirect Server will send the next node information back to

the User Agent for further requests. Once the address is

resolved, the User Agents negotiate the parameters of the

call in Session Description Protocol (SDP) (RFC 2327 found

on Figure 3) messages. SDP is used by other protocols as a

standard format to describe the elements of a session such

as which CODEC will be used. If the call will traverse to

a different type of network, the Media Gateway Controller

negotiates the call and acts to mediate between the source

and destination User Agents during the call. Multi Gateway

Control Protocol (MGCP) (RFC 2705 found on Figure 3)

establishes the use of Media Gateway Controllers. These

controllers govern the operation of various Media Gateways.

Media Gateways translate between various types of networks

such as the Telco Backbone, a local loop, an Asynchronous

Transfer Mode (ATM) network, or a PBX.

15

Figure 3: Protocols related to Voice over IP (From
Miller, 2002)

2. International Telecommunications Union (ITU)

The International Telecommunications Union (ITU) is a

body responsible for establishing global telecommunications

standards. The specifications from the ITU for VoIP

closely follow other telecommunications standards and

specify the working of VoIP in terms of signaling. In

contrast to the IETF’s collection of protocols that can be

used for VoIP, the ITU provides a single specification,

H.323. H.323 is an overarching standard for “packet based

16

multimedia without QOS”. H.323 incorporates other

protocols such as H.225.0 for terminal to gatekeeper

signaling and H.245 for Terminal control. Figure 4 shows

the relationship between these protocols and the transport

mechanism.

Figure 4: H.323 Protocol Stack (After Black, 2000)

A detailed call progression for systems using H.323 is

beyond the scope of this paper. A summarized description

follows:

A user’s equipment is called a terminal. Before a

call can be placed, the terminal must register with a

gatekeeper. If the terminal is a part of a data network,

the terminal performs the encoding, compression, and

encapsulation of the voice sample. If the terminal is not

part of a network, this function is performed by the

Gateway. A Gatekeeper serves as the overall controller of

the VoIP system. It controls access to the network,

manages bandwidth, and performs address resolution. The

source and destination Gatekeeper actually establish a

17

call. If the call will traverse a non-IP based network,

the Gatekeeper controls the Gateways that perform the

required translations. The Gatekeeper uses the previously

mentioned Media Gateway Control Protocol (MGCP) or its

replacement, Media Gateway Control (MEGACO/H.248) for

control of all nodes. MEGACO/H.248 is a joint IETF and ITU

standard based on Media Gateway Control Protocol (MGCP).

This section shows VoIP technology is actually

governed by two different bodies, the IETF and the ITU.

The methods and equipment used by each are different. The

differences are seen at the node level but ultimately, both

accomplish voice transmission over an IP based network. No

matter which type of system is used, specific challenges

must be overcome if VoIP is to be successful.

18

THIS PAGE INTENTIONALLY LEFT BLANK

19

IV. CHALLENGES OF VOIP

For any replacement technology to become widely

accepted, the services provided must be comparable with

those of the current system. More often, users demand even

more from a new technology. In the case of VoIP, this

presents several technical challenges. This chapter

addresses the four main technical VoIP issues that should

be considered when a network is first engineered. They are

voice quality, delay, jitter, and packet loss.

A. VOICE QUALITY

Users have come to expect high quality voice

communication using current technologies. For VoIP to be

successful, it must be able to produce comparable quality

voice communication. VoIP voice quality is primarily

affected by compression of the voice signal and the type of

encoding used in VoIP applications. Compression is

important in trying to reap the benefits of VoIP because it

reduces the amount of data transmitted. The benefits of

compression come with a price because compression affects

the quality of the recovered voice signal. The Mean

Opinion Score (MOS) is a subjective scoring that rates the

quality of a coder/decoder (CODEC) under various conditions

such as background noise and multiple encodings. Figure 5,

shows an averaged MOS for common CODECs used in VoIP.

20

Figure 5: Comparison of Compression Techniques (After
Caputo, 2000)

Each time a voice sample is encoded the MOS decreases.

This is important because for each segment of a network

that requires a CODEC translation, the resulting MOS will

be lower. (Davidson, 2000) This will adversely affect the

quality of the received voice signal.

Silence Suppression also adversely affects MOS.

Silence Suppression techniques are used to save bandwidth

by not transmitting during periods of silence. The problem

with these techniques is that clipping of the conversation

can occur.

Even though compression and silence suppression reduce

the MOS and degrade the quality of the received signal,

they are still used by some VoIP applications. Not all

VoIP applications do both. VoIP can be tailored, by CODEC

selection, to trade voice quality for bandwidth savings as

desired.

B. DELAY

Delay is the amount of time it takes a signal to be

digitized, transferred, and then converted back into an

21

analog signal at the receiver. A delay of 250ms or less is

the generally accepted threshold for commercial toll

quality service. Often, however, longer delays are

tolerated. Some overseas phone calls and long distance

cellular phone calls have delays exceeding 250ms.

Communication via satellite is still possible even with

delays in excess of 500ms. The sum of all delays in the

system is called the end-to-end delay. End-to-end delay is

generally referred to as just the delay or latency of the

system. There are three types of delay to consider when

discussing VoIP. These are propagation delay,

serialization delay, and handling delay.

Propagation delay is the time it takes for a signal to

traverse the physical media. For a copper wire, this is

about 8 microseconds/mile. For applications involving a

few thousand miles this may not be significant but if the

network uses a High Earth Orbiting satellite, this delay is

on the order of 500ms which is significant.

Serialization delay is characterized by the number of

bits that can be transferred per second. This is not to be

confused with the data rate of the media. This can more

accurately be described as the data rate of the physical

interface. This is generally neglected and not an issue for

VoIP implementation since it is such a small contribution

to the overall delay in the system.

Finally, handling delays incorporate all delays caused

by manipulating the data. If 20ms of voice is packaged

into a single datagram, the handling delay is this 20ms

plus the time to actually encode the data. Additionally

there is a delay as each piece of equipment handles the

information. Significant delays occur when data is queued.

22

For most applications, handling delay is the biggest

contributor to the end-to-end delay, but is also the one

type of delay best controlled through proper engineering of

the system.

C. JITTER

Jitter is the variation in the inter-arrival time

between packets. Jitter is important because if not

accounted for properly it can cause the decoded message to

sound choppy. The affects of jitter are usually corrected

by implementing a jitter buffer that delays messages on the

receiving end longer than the experienced jitter. This

allows the information to be replayed at a constant rate.

Implementation of the jitter buffer does contribute to the

delay but is necessary for maintaining voice quality.

D. LOST PACKETS

Packet loss is not unexpected in any network. This is

the reason Transmission Control Protocol (TCP) contains a

mechanism for the retransmission of missing packets. The

time that it takes for a missing packet to be retransmitted

is unacceptable in VoIP. This is the main reason VoIP

applications use the User Datagram Protocol (UDP), which

does NOT retransmit lost packets. The loss of a single

packet can be masked by replaying the previous voice

sample. This technique does not work when multiple packets

are missing. When multiple packets are lost, the decoded

voice signal may contain a pause or sound choppy.

Engineering a highly reliable network can mitigate the

number of lost packets.

These technical challenges are not insurmountable

obstacles but rather items that must be addressed. When

engineering a system for VoIP, mechanisms to control voice

23

quality, delay, jitter, and packet loss must be included.

The next chapter will examine the current Navy INMARSAT

communication architecture. Later chapters will show how

this architecture can benefit from the transition to VoIP.

24

THIS PAGE INTENTIONALLY LEFT BLANK

25

V. THE NAVY VOIP IMPLEMENTATION

As previously discussed, VoIP increases efficient use

of bandwidth by converging voice and data networks. The

Navy currently uses circuit switching for voice

communications and the Automated Digital Network System

(ADNS) for managing data communications. This chapter will

discuss using VoIP to converge these networks. VoIP will

be implemented within the ADNS. This chapter will describe

the current ADNS and review some of the VOIP technical

considerations as they relate to ADNS. Finally, two (2)

possible implementation strategies are presented.

A. THE AUTOMATED DIGITAL NETWORK SYSTEM

To manage the increasingly important and complex web

of bandwidth limited communications, the Navy developed the

Automated Digital Network System (ADNS). ADNS is designed

to combine and manage the multiple data communications

paths that include UHF, SHF and EHF communications while at

sea as well as copper and fiber optic connections when

pier-side. ADNS provides continuous data connectivity for

the ship. If one communications path becomes inoperative,

ADNS is designed to allow another path to handle important

traffic. Using this system, most Unit Level ships

communicate while underway via a 64kbps INMARSAT leased

connection. This leased channel is normally configured as

half for data and the other half for Plain Old Telephone

System (POTS) connectivity. Figure 6 is a simplified block

diagram of the ADNS.

26

Figure 6: Simplified Block Diagram of ADNS (After
 Buddenburg, 2003)

Figure 6 shows the system is composed of several

security enclaves. These enclaves are merged with the

secret enclave at the ADNS router using Inline Network

Encryption (INE) to form a common off-ship data stream.

The data stream then travels through the Time Division

Multiplexing (TDM)/MUX where it is multiplexed with the

circuit switched voice communications and sent via

satellite connection to shore.

B. TECHNICAL CONSIDERATIONS TO THE VOIP IMPLEMENTATION

1. Delay

As previously stated, there is a need to manage delay

in a VoIP implementation. Because INMARSAT uses satellites

in a geostationary orbit, the propagation delay is

significant, commonly more than 500ms. Although the 250ms

goal for toll quality voice is no longer feasible, managing

27

‘handling delays’ is still important. The effective data

rate of the VoIP system is closely tied to the frame size.

Selecting an appropriate frame size is actually an

optimization problem. A large frame size can lead to a

high efficiency because the fixed overhead associated with

transport and encryption has less impact on the effective

data rate. But, a large frame size increases handling

delays and adversely affects voice quality. The selection

of an appropriate frame size must balance efficiency needs

with voice quality desires.

2. Jitter

Jitter must also be closely monitored. In a low

bandwidth connection, such as INMARSAT, increasing queuing

delays for data are likely to occur. This delay will

manifest as jitter. For an ADNS implementation of VoIP to

succeed, the queuing delay must be controlled. This can be

accomplished by implementing a Quality of Service (QOS)

mechanism that provides priority handling for VoIP traffic.

In the latest version of the ADNS, Class Based Weighted

Fair Queuing (CBWFQ) provides QoS. (Barsaleau & Tummala,

2004) CBWFQ can provide guaranteed bandwidth and expedited

service for the VoIP traffic and ensure a fair allocation

of resources to each ADNS enclave.

3. Packet Loss

A third factor to consider when implementing VoIP in

the ADNS is packet loss. The main contributor to packet

loss is Bit Error Rate (BER). The BER is the probability

that an individual bit will be corrupted during

transmission. If a bit is corrupted, the packet is

discarded and considered lost. For a terrestrial network,

BERs are usually less than 10-10 and are not often

considered a significant issue. In a Navy system that uses

28

RF transmissions for data transfer, this is not the case.

For a typical INMARSAT connection, BERs in the realm of 10-

5-10-7 are common. As frame size increase, the probability

of a lost packet increases as well. Additionally, the

negative impact on voice quality created by that lost frame

also increases. When determining the frame size for an

ADNS VoIP implementation, BER should be considered.

C. TWO POSSIBLE IMPLEMENTATIONS

1. Direct VoIP Implementation

The Navy currently uses the secret network as its

common ship to shore and shore to ship routing network.

All traffic from the unclassified and SCI enclaves are

encrypted using an IPSec device, also referred to as an

Inline Network Encryption (INE) device. The encrypted

traffic is then joined with the secret data traffic in the

ADNS router. The INE currently used by ADNS is the

Taclane. Figure 7 depicts the current security

configuration of ADNS and shows were VoIP traffic will be

introduced into the network at the UNCLASSIFIED enclave.

EHF TIPEHF TIP

Radio’sRadio’s
SATCOM Pt-Pt
Ship to Shore
SHF, CA III
Inmarsat, etc.

Ship to Ship
And Ship to ShoreEthernet

Serial

Serial

COWANCOWAN

SCISCI

TIPTIP

RadioRadio

RadioRadio

BGP4

SecretSecret

UnclassUnclass

Radio’sRadio’s
DWTS Pt-Pt
Ship to Ship

JCAJCA

TaclaneTaclane

MAGTFMAGTF

PBX

Voice
IP MUX

SecretSecret

TaclaneTaclane

TaclaneTaclane

Figure 7: Current ADNS Ship Configuration (From Casey,
2004)

29

2. An Alternative VoIP Implementation

 The impact of the direct implementation presented

above is the addition of overhead to the VoIP traffic from

the INE. The INE adds a minimum of 58 bytes to the IP

datagram. This increases the effective data rate required

for VoIP implementation. Eliminating the overhead of the

INE from voice traffic will increase the efficiency of the

implementation. Figure 8 shows an alternative

implementation called a “Black ADNS Ship Configuration”

(From Casey, 2004).

EHF TIPEHF TIP

RadioRadio
SATCOM Pt-Pt
Ship to Shore
SHF, CA III
Inmarsat

Ship to Ship
And Ship to ShoreEthernet

Serial

Serial

COWANCOWAN

JCA

SCISCI

TIPTIP

RadioRadio

RadioRadio
BGP4

SecretSecret

PrivatePrivate

UnclassUnclass

RadioRadio
DWTS Pt-Pt
Ship to Ship

JCAJCA

MAGTFMAGTF

PBX

Voice
IP MUX

TaclaneTaclane

TaclaneTaclane

TaclaneTaclane

TaclaneTaclane

TaclaneTaclane

Figure 8: Black ADNS Ship Configuration (From Casey,
2004)

This proposed solution sends the secret enclave

through an INE. VoIP traffic is combined with the other

network traffic at the ADNS router. However, in this

configuration, the VoIP traffic does NOT pass through an

INE. There is no added overhead. This will increase the

efficiency of the VoIP implementation.

30

This chapter introduced two possible VoIP

implementations within the Automated Digital Network System

(ADNS). The thrust of this research was to develop a model

that simulates these two scenarios. The next chapter

describes the model development.

31

VI. MODEL DEVELOPMENT

Simulation models are a quick and efficient way to

narrow the field of research. Through high level modeling

of a proposed network, quick feasibility studies can be

conducted and future work can be scoped. A more detailed

model can help tune parameters or verify the correctness

and optimization of a protocol. All of this can be

accomplished without procuring equipment. Hours worth of

data can be obtained in minutes worth of runs.

When modeling, it is easy to over analyze a problem in

an effort to provide a high fidelity model. In order to

scope a project and determine what is important to model,

it is necessary to first state the problem as simply as

possible. The base question to be answered in this

research is: Is it beneficial to pursue the implementation

of VoIP on Unit Level ships? Other questions will have to

be answered before a final conclusion can be reached, but

this question must always be kept in mind. Once the

question has been determined, a modeling tool must be

selected.

A. TOOL SELECTION

OMNeT++ was chosen because the author was familiar

with the package and modification and extensibility of the

existing functionality are easy to accomplish. OMNeT++ is

a simulation environment whose primary application area is

the simulation of communications networks. It is flexible

enough to simulate IT systems, queuing networks, hardware

architectures and business processes as well. Simulation

components are written in C++ and the modules are written

in an easy to understand language called NED. OMNeT++ is

32

easy to learn and use and well suited to this research

effort. Appendix B contains a complete listing of the

OMNeT++ code written specifically for this research effort.

Once the simulation tool was selected, the next step

was to develop the model. The steps used in model

development are described below.

B. MODEL DEVELOPMENT

Although it is possible to model every component in

the ADNS simplified block diagram (figure 6), every

component was not needed to answer the research question.

The first step was to determine which nodes and connections

were important and to simplify the network to only these

nodes and connections.

The last part of the ADNS system, from the ADNS router

through the satellite link, was the easiest to simplify.

The first simplification was to consolidate the time lag

introduced by the KG’s and the satellite link into a single

delay. Next the bandwidth restrictions in the FCC100 and

the satellite were modeled using the most restrictive

setting. The voice from the FCC100 was not included

because it was already accounted for in the bandwidth

restrictions. The delay and data rate were combined into a

single channel that was modeled as a 500ms delay and either

a 32 kbps or 64 kbps data rate.

The ADNS router was modeled next. The ADNS router

performs two primary functions in the model. It both

routes the incoming and outgoing messages and provides QoS

for the messages traveling via the INMARSAT link.

Separating these two functions in our model makes it easier

to examine various QoS mechanisms at a later time. Because

of this separation, the OMNeT++ IPSuite standard router was

33

used as the router component and a new component called a

WRED Box was created.

The WRED Box was loosely based on the description of

Weighted Random Early Drop (WRED) and Class Based Weighted

Fair Queuing (CBWFQ) found in (Barceleau, 2004). The

component actually used is a scaled down version that

adequately represents the configurations needed by this

research. The WRED Box queues the incoming messages into

either a High Priority Queue (HPQ) or a Low Priority

Queue(LPQ). Those messages with a Differentiated Services

Code Point (DSCP) marker of 46 were placed into the HPQ.

As long as the HPQ contains items but has not yet reached

its reserved allotment of bandwidth, the model services the

HPQ. The LPQ is serviced when the HPQ is empty or exceeds

its reserved allotment. The WRED algorithm for controlling

queue depth is implemented on both queues. Because

throughput was already calculated for the HPQ, the

measurements for system throughput were taken at this point

for all types of traffic. The code written to model this

component can be found in Appendix B.

The INE was modeled next. It was modeled as a

separate element to provide flexibility in the model.

Messages that are encrypted can be connected through this

node to incur the INE overhead; those that are not, bypass

it. The INE was created based on the equation found in

(Hucke, et. all, 2003). Rather than actually encapsulating

the message as described in (Hucke, 2003), the IP Header

field length was modified to save on computing resources

when running the simulation. The code written to model

this component can be found in Appendix B.

34

The voice traffic was modeled next. A client was

needed that periodically sends a burst of information and

then waits for a reply. The reply was modeled after an

actual conversation where the listener responds after a

reasonable period of inactivity.

The original plan was to create a voice client based

on an available RTP implementation. Further research

showed the only impact RTP had on the model was the

addition of 8 bytes to the packet size. At this point,

instead of creating a voice client based on the RTP

implementation, the OMNeT++ IPSuite UDP Host was modified

to create a VoIP Host. The client application modeled the

voice traffic in the following manner: Based on the CODEC

rate, frame size, and reply length, a number of messages

are sent, modeling a voice burst. An internal timeout was

then used to initiate a reply. The timeout was reset with

the arrival of each message from the transmitting end. The

length of each message is increased by 8 bytes to account

for the RTP overhead. A second timeout was added to

control the call cycle. This simulates a normal phone

being on and off hook. The server side was merged into the

client to simplify the reply mechanism. The code written

to model this component can be found in Appendix B.

Once the VoIP client was written, an appropriate CODEC

had to be selected. The model was built on the premise

that the CODEC data rate and frame size were the driving

factors in performance. The G.723r53 was selected because

it requires the lowest data rate. For the STUIII calls,

however, other factors come into play. The STUIII was

designed for data over voice and does not perform well with

35

the lower data rate CODECs. From results in (Hucke, 2003),

the G.726r16 was selected as the CODEC used for STU capable

conversations.

The background traffic was modeled next. A UDP client

was selected because a flow of data could be shaped to

provide constant loading to the system. Initially, using a

TCP client and server was considered. However, further

research showed that managing the proper number of clients

to create the desired loading would be difficult. The

purpose of the model is not to measure the amount of

traffic passed through the network but instead to measure

the change in the amount. Therefore, the model could be

simplified by combining the clients from the three

enclaves. It is the relative change in the aggregate

traffic that is of interest to this research. If further

work is contemplated on QoS mechanisms, it may be required

to separate the types of traffic and identify the source

enclave of each.

The standard UDP client was considered, but it did not

give enough control over the amount of data that was being

sent, therefore this client was also rewritten. The

Traffic UDP Host was created to constantly transmit packets

based on the desired data rate and message size. On the

receiving side of the host, the message is dropped once the

desired metrics are recorded. The code written to model

this component can be found in Appendix B.

This completed the modeling of the components that

make up the overall VoIP model. Before the overall model

could be run, two major questions had to be answered.

First, what is the optimal frame size? Second, do TCP

congestion control methods preclude the use of UDP data

36

streams as an appropriate abstraction for accurately

modeling composite network traffic? The following section

describes how these questions were answered.

C. INTERMEDIATE MODELS

1. Frame Size

In order to determine the optimal frame size, two

network simulations were built using components already

modeled. The code written creating this simulated network

can be found in Appendix B. The results of these

simulations were used to determine the effects of various

frame sizes on the required effective data rate for

different CODECs when the IP and INE overheads are applied.

Figure 9 shows the network used to test this CODEC

efficiency at various frame sizes with an INE.

Figure 9: VoIP network with INEs

Runs were conducted at 16 kbps and at 5.3 kbps with

frame size varying from 10 to 500 ms. The network was

modified to remove the INE and the runs were repeated.

Measurements for throughput were taken at the node labeled

wred1.

Figure 10 shows a graphical representation of the

results. It plots the required effective data rate verses

frame size for the four previously described runs. The

37

lower the data rate required, the more effectively the

CODEC performs at that frame size.

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200 250 300 350 400 450 500

Frame Size (ms)

D
at

ar
at

e
(b

ps
)

5.3kbps
16kbps
5.3kbps (w/ INE)
16kbps (w/ INE)

Figure 10: Effect of frame size on CODEC
performance

From figure 10, we see the larger the frame size the

more effective the CODEC performance as would be expected.

As frame size increases above approximately 140 ms the

improvement is marginal. Taking into account the earlier

discussion of handling delay, the 140 ms frame size is the

optimized solution between efficiency and voice quality.

The jagged steps in the curves that correspond to the

networks with an INE result from the padding introduced by

the Taclane. This padding is used to obtain a 48-byte

increment needed in the encryption of the packet and

implies that the best performance will be achieved where

the packet size is near a multiple of 48 bytes. The 140 ms

frame size fits this requirement as well.

38

These results are based upon a generic CODEC. Vendor

specific implementations may add look ahead or other

mechanisms that increase quality of service but also change

the effective CODEC data rate. Therefore, these results

should be modified when considering optimal settings for

actual CODEC use.

2. Impact of TCP Congestion Control

After initial design considerations were complete, a

conversation with Mr. Ed Hucke from SPAWAR PMW 179, the

engineers of ADNS, made us question the decision to model

the network traffic as UDP packets. Mr. Hucke stated a

concern that the TCP Slow Start congestion control

mechanism may reduce the amount of traffic that could be

transmitted in the periods without voice transmissions due

to a lag in resumption of traffic to fill the available

bandwidth. (Schilke, 1997) confirms this could be an

issue.

To test the theory, the standard TCP client was

modified to collect ‘goodput’. Goodput is the rate at

which unique data arrives at the client. The network

simulation shown in Figure 11, was designed to test the

effects of the Slow Start algorithm on changes to the

bandwidth available for low priority messages. The code

written creating this simulated network can be found in

Appendix B. The results of this simulation would determine

if UDP accurately models aggregate network traffic changes.

39

Figure 11: TCP Client Network

The network was configured for a variable number of

TCP clients with matching servers and three VoIP Clients.

A heavy load, medium load, and light load were set in the

configuration by using 18 clients, 3 clients, and 1 client

respectively. After each run, the amount of data received

from each client was combined in an Excel spreadsheet. The

data was sorted by timestamp and the amount of data

received by a client was divided by the time difference

between this timestamp and the previous timestamp. This

calculation provided the network goodput.

Figure 12 shows graphical results of the run under

heavy load. It plots the goodput as a data rate verses

time. Periods where congestion control effects are

potentially affecting the network traffics ability to

40

respond to cessation of voice transmissions would appear as

periods of reduced goodput occurring in the absence of

voice transmissions.

0

10000

20000

30000

40000

50000

60000

70000

0 100 200 300 400 500 600

Time (s)

D
at

a
R

at
e

(b
ps

)

Data Tranmissions
Voice Transmissions

Figure 12: Data Rate for network with 18 Clients

As expected for the heavy load, shown in Figure 12,

the amount of data queued and the number of clients

receiving data tended to dampen most congestion control

effects. There was no evidence that the slow start

protocol would cause a problem with modeling the traffic as

UDP packets.

When the runs were repeated at a medium and light

load, the number of areas where congestion control was

potentially affecting the ability to model network traffic

using UDP increased. It is not as clear, however, if these

are slow start effects after the cessation of voice

transmissions. Figure 13 shows that with three clients,

some of the periods without data being received by a client

41

have extended. If this was an issue that affects the use

of modeling as UDP, these periods would consistently appear

at the end of each voice transmission. Figure 13 clearly

shows this is not the case. Therefore, it can be assumed

UDP will still accurately model the network traffic in this

scenario.

0

10000

20000

30000

40000

50000

60000

70000

0 100 200 300 400 500 600

Time (s)

D
at

a
R

at
e

(b
ps

)

Data Tranmissions
Voice Transmissions

Figure 13: Data Rate for Network with 3 Clients

Figure 14 shows the graphical results of modeling the

network with a light load of one client. Once again,

extended periods with reduced goodput are present. Again,

the lack of consistency in location and duration can only

lead to the conclusion that these periods are not affecting

transitions from voice transmissions.

42

0

10000

20000

30000

40000

50000

60000

70000

0 100 200 300 400 500 600

Time (s)

D
at

a
R

at
e

(b
ps

)

Data Transmissions
Voice Transmissions

Figure 14: Data Rate for Network with 1 Client

To further ensure that TCP data traffic can be modeled

as a UDP data flow, the goodput between voice transmissions

for each case was compared with comparable time periods on

a simulation run with zero voice clients. The data

received on this final run was within 3.5% of the data in

each of the previous simulations, further showing that our

decision to model using UDP traffic is valid.

Now that the components have been modeled, the optimal

frame size determined, and the use of a UDP Host for

Traffic verified, the overall models testing the two

different VoIP implementations were built. The code

written creating this simulated network can be found in

Appendix B. The network simulations were configured with a

UDP Traffic Client and a variable number of VoIP Clients as

shown in Figure 15.

43

Figure 15: Network for Determining VoIP Transition
 Efficiency

Each set of runs varied the call cycle while keeping

the number and configuration of the clients the same.

Detailed results, conclusions, and future work are

presented in the next chapter.

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

VII. RESULTS AND CONCLUSIONS

Is it beneficial to pursue the implementation of VoIP

on Unit Level ships? To answer this question the model

described in the previous chapter was run varying the call

cycle while keeping the number and configuration of the

clients the same. The simulated network was modified to

investigate various potential implementation strategies

described in Chapter V. Below are the results of those

simulations.

A. DIRECT IMPLEMENTATION OF VOIP

The direct VoIP implementation was simulated using

varying numbers of VoIP clients that sent data through an

INE. Figure 16 shows graphical results obtained from the

direct implementation simulation model.

-40

-20

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Call Cycle (%)

Pe
rc

en
t C

ha
ng

e
(fr

om
 3

2k
 d

at
a)

 (%
) 1 POTS

2 POTS
1 STU
1 POTS 1 STU
2 POTS 1 STU
2 STU
2 POTS 1 STU w/ Silence Suppression
3 POTS w/ Silence Suppression
4 POTS w/ Silence Suppression
5 POTS w/ Silence Suppression
6 POTS w/ Silence Suppression

Figure 16: Effects of call cycle on VoIP
 Implementation

46

Figure 16 plots percent change in goodput compared to

a baseline of 32k data verses the call cycle percentage. A

gain is realized when the percent change in goodput is

greater than zero. The ideal case would be where the

percent change in goodput is greater than zero through 100%

call cycle. The different runs represent different

possible combination of POTS and STU lines in use

simultaneously. Run configurations do not include

configurations that will exceed the total available

bandwidth.

Figure 16 shows an increase in the throughput for data

traffic over the current ADNS configuration for up to a 72%

call cycle when implementing VoIP using two (2) POTS lines

and one (1) STU line. With silence suppression enabled a

throughput gain is seen through close to a 100% call cycle.

Another benefit of the transition to VoIP shown by the

results of this simulation is the ability to have more POTS

lines than are currently available. With silence

suppression enabled, six (6) concurrent POTS calls were

possible at near 100% call cycle before a decrease in

performance is seen compared to current throughput levels.

The current ADNS configuration allows for up to two

(2) POTS and two (2) STUs to be operated simultaneously.

The Voip implementation simulated above cannot support this

configuration and is limited to two (2) POTS and one (1)

STU or two (2) STUs. This limitation comes from the 64

kbps bandwidth limitation of the currently fielded INMARSAT

configuration.

The direct implementation model was modified to use a

potential INMARSAT upgrade to increase bandwidth to 128

kbps, which is commercially available. Figure 17 shows the

47

ability for a VoIP implementation under these conditions to

support up to five (5) STU lines.

-100

-50

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

Call Cycle (%)

Pe
rc

en
t C

ha
ng

e
(fr

om
 c

ur
re

nt
 c

on
fig

ur
at

io
n)

32K Voice
2 POTS 2 STU
2 POTS 1 STU
2 STU
2 POTS
1 STU
3 STU
4 STU
5 STU

Figure 17: Upgraded 128K INMARSAT

B. ALTERNATIVE VOIP IMPLEMENTATION

The overhead caused by the INE can be eliminated by

transitioning to Black Voice routing as discussed in

Chapter V. The direct network model was modified by

removing the INE module associated with each VoIP Client.

Figure 18 shows the results of the simulations run under

these conditions. This configuration can support two (2)

POTS and two (2) STU lines without upgrading the INMARSAT

equipment.

48

-40

-20

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Call Cycle (%)

Pe
rc

en
t C

ha
ng

e
(fr

om
 3

2k
 o

f D
at

a)

32K voice

1 STU

2 POTS

1 POTS 1 STU

2 POTS 1 STU

2 POTS 1 STU w / Silence Suppression

2 POTS 2 STU w / Silence Suppression

Figure 18: Black Voice Routing

C. CONCLUSIONS

This investigation has shown the benefit of converging

the voice and data networks for unit level ships. The

Center for Naval Analysis documented the POTS usage for two

battle groups during their JTFX’s. In their letter CME

D0008489.A1 of June 2003, the authors stated that POTS

usage for the 18 ships using INMARSAT channels was 8.1

percent. (Hucke, 2003) Using an 8% call cycle as a point

of reference, we see approximately an 85% increase in

bandwidth available for all configurations. In order to

realize these gains it is not necessary to develop a CODEC

specifically for the STU line, it is not necessary to

transition to a Black Routing paradigm, nor upgrade the

INMARSAT connection to 128kbps. This does not mean that

any of these endeavors should be abandoned since all will

lead to increases in performance that will most likely be

49

required in the future. As the Navy becomes more NET-

CENTRIC WARFARE oriented, additional capacity will be

needed. Implementing VoIP and taking advantage of the

additional options is one way to meet this future need.

D. FUTURE WORK

This is not the end of development for this model. In

its current state, this research has shown the model is

able to provide a quick feasibility study. With a

refinement of several components, however, it could be used

to decide which QoS protocols show the greatest potential

benefit and where in the network they are best utilized.

Although it was appropriate to model the background

traffic as a single UDP stream in this research effort,

many future investigations may need greater fidelity. When

the stable release of IPSuite is available, the model

should be transitioned and a goodput analysis method

developed for TCP.

A fleet demonstration of the direct implementation for

VoIP is currently scheduled for the summer of 2004.

Results from that demonstration should be used to refine

the model for future testing.

A more efficient means of achieving secure voice

communications is needed in the form of a native VoIP

device that can take advantage of silence suppression and

also use lower data rate CODECs.

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

APPENDIX A. GLOSSARY

Analog-to-digital Converter (ADC) - accepts an analog

input-a voltage or a current-and converts it to a digital

value that can be read by a microprocessor.

Asynchronous Transfer Mode (ATM) - a network technology

that is based on transferring information in cells of fixed

size. It well suited for converged networks because it

creates a channel at the beginning of a data transfer

session, allocating a fixed amount of resources to that

session.

Automated Digital Network System (ADNS) – a system designed

to combine and manage the multiple communications paths to

include UHF, SHF and EHF communications as well as copper

and optical pier side connections to provide ships force

continuous data connectivity for high priority information.

Automatic Digital Network (AUTODIN) - a legacy

communications system for ensuring the delivery of message

based communications throughout the Department of Defense.

For most purposes it has been replaced by DMS.

Bandwidth - traditionally the difference between the upper

and lower frequencies of a transmission band. Recently it

has also come to mean the amount of data that can be passed

along a communications channel in a given period of time

measured in bits per second (bps).

Bit Error Rate (BER) - the rate at which data is corrupted

expressed as a percentage.

Centrex Line - a service purchased from the local exchange

carrier that groups phone lines into a closed user group

52

(CUG). This provides additional services such as call

transfer and call groups without the purchase of a PBX.

Class Based Weighted Fair Queuing (CBWFQ) - provides

Quality of Service (QoS) by separating traffic into queues

based upon a differentiated Services Code Point (DSCP) and

then allocating each queue a share of the bandwidth.

Closed User Group (CUG) - a grouping of business phone

lines that allows the phone company to provide PBX services

from their office.

CODEC (coder/decoder) - a schema for encoding or decoding

information from an analog to digital or digital to analog

form.

Convergence - the combining of multiple networks such as

voice data and video into one network.

Datagram - a self-contained, independent entity of data

carrying sufficient information to be routed from the

source to the destination computer without reliance on

earlier exchanges between this source and destination

computer and the transporting network.

Defense Message System (DMS) - a system based upon email

standards to deliver message based communications

throughout the Department of Defense. It was designed to

replace AUTODIN.

Delay - in VoIP it is the time it takes for speech to

transmit from the speakers mouth to the listeners ear.

Differentiated Service (DiffServ) - uses a code in the

Type-of-Service (TOS) field of the IP header to determine

priority handling.

53

Digital-to-analog Converter (DAC) - accepts a digital input

and converts it to a voltage or current output.

Enhanced 911 - a safety related service that associates

location information with an emergency call. Because the

information comes from the phone company, systems such as a

traditional or VoIP PBX must have a mechanism to provide

this information.

Extremely-high Frequency (EHF) - the frequency spectrum

from 30 – 300 GHz and is often used for military satellite

communications.

FCC100 - a Time Division Multiplexing (TDM)/ Multiplexer

(MUX) used in the ADNS system.

Gatekeeper - used in VoIP to control access to the network,

manage bandwidth, and serve as the address resolution

component.

Gateway - provides the translation functions for the voice

/ data conversions.

H.323 - an ITU-T standard that offers audio, video and data

communications across packet-based network infrastructures.

H.323 provides standards for encoding, bandwidth

management, admission control, address translation, call

control and management, and links to external networks. The

H.323 protocol stack comprises a set of protocols that ride

on TCP/IP and UDP/IP, where TCP is used for call setup and

control, while UDP is used for data transmission and

reception.

Inline Network Encryption (INE) – an device to provide

payload encryption on a packet by packet basis but leave

the IP header information in plain text. The device that

is currently in use for ADNS is the KG-194 TACLANE.

54

IP Security (IPSec) - A protocol that provides security for

transmission of sensitive information over unprotected

networks such as the Internet.

Integrated Services Digital Network (ISDN) – a set of

communications protocols that specify the carrying of

voice, video, and data over a single wire that is

eventually supposed to replace POTS.

Jitter – the variation in delay between packets.

Key System – a business telephone system that generally is

cheaper than a PBX but also contains fewer features.

Generally suited for smaller offices.

Latency – see delay.

Mean Opinion Score (MOS) - a subjective scoring system for

rating the quality of voice communications. Obtained by

having a number of people listen to various voice

transmissions and averaging their ratings of between 1

(worst) and 5.

Media Gateway Control (MEGACO/H.248) – a standard developed

jointly by the IETF and ITU to recommend controls for

gateways between networks.

Multi Gateway Control Protocol (MGCP) – an IETF standard to

recommend controls for gateways between networks.

Multi-level Precedence and Preemption (MLPP) – a priority

scheme in military communications that give priority to

certain calls and specifies timeframes for handling those

calls.

Multipoint Control Unit (MCU) - connects three or more

terminals in a “conference call”.

Packet – a generic term used to describe a unit of data.

55

Plain Old Telephone System (POTS) – a term used to describe

the traditional, analog based, telephone system.

Private Branch Exchange (PBX) – a business telephone system

that allows the business complete control over its

configuration.

Public Switched Telephone Network (PSTN) – the collection

of interconnected systems operated by the various telephone

companies and administrations around the world.

Quality of Service (QoS) - a networking term that specifies

a guaranteed throughput level.

Radio Frequency (RF) - a frequency in the range within

which radio waves may be transmitted, from about 3

kilohertz to about 300,000 megahertz.

Real-Time Transport Protocol (RTP) - provides real-time

delivery of data, in particular voice traffic. RTP is

typically built on UDP but includes a sequencing system to

detect missing packets, as well as information regarding

the payload type including the audio and video encoding

used.

Real-Time Transport Control Protocol (RTCP) – provides a

means to exchange quality of service information between

nodes using RTP.

Secure Telephone Equipment (STE) – the replacement for the

STU-III.

Secure Telephone Unit – Third Generation (STU-III) – a

device designed to enable secure voice communications over

an unsecure voice network.

Server – in VoIP this is a general term for the Gatekeepers

and Gateways.

56

Session Description Protocol (SDP) - used by other

protocols as a standard format to describe a session.

Session Initiation Protocol (SIP) - considered as the

IETF’s replacement for H.323, and is a text-based signaling

protocol sent over TCP or UDP.

Silence Suppression – a method of conserving bandwidth in a

VoIP call by not encoding and sending voice packets during

periods of silence.

Super-high Frequency (SHF) - the radio frequencies between

3 – 30 GHz. Well suited for satellite communication, it is

the band in which INMARSAT operates.

Tie-line – a communications link between two PBX’s.

Time Division Multiplex (TDM) – a type of multiplexing that

assigns each voice or data stream it own timeslot.

Transmission Control Protocol (TCP) - a connection-oriented

protocol that provides guaranteed delivery of its payload.

Ultra-high Frequency (UHF)

Unit Level Ship – used to contrast with a force level ship

(LHA/LHD or CV/CVN). In this paper it generally refers to

a DDG or CG.

User Agent – the software that interfaces with and acts on

behalf of the user. Sometimes referred to as a terminal.

User Datagram Protocol (UDP) - a connectionless protocol

that does not provide guaranteed delivery.

Virtual Private Network (VPN) – a network designed for

private information created using a public network to

57

connect the nodes. Encryption is usually employed to

ensure that only authorized users have access to the

private network.

Voice Activity Detection (VAD) – see silence suppression.

Voice over Internet Protocol (VoIP) – the transmission of

voice over an IP based network.

Weighted Random Early Drop (WRED) – a congestion avoidance

mechanism that drops packets before congestion occurs,

based upon precedence. Lower priority packets are more

likely to be dropped in order to reduce congestion and

avoid having to drop higher priority packets.

58

THIS PAGE INTENTIONALLY LEFT BLANK

59

APPENDIX B. SIMULATION CODE

The following simulations were written to run using

Omnetpp-3.0a3 and IPSuite-20040322 which can be obtained

from www.omnetpp.org. Later versions of the software

change the mechanisms for creating and sending messages and

will require modifications to this code. This appendix

begins with changes that were made to the IPSuite source

code to fix a few bugs and to allow for data collection in

the TCP Client Application. The second section provides

the source for the basic components followed by the last

section with the source for the networks used for analysis.

A. CHANGES TO IPSUITE SOURCE

IPSuite-20040322\Applications\TCPApp\procserver.cc

Line 110

Change

msg = receive(appl_timeout);

To

goto broken;//application terminates connection

Fixes – Problem that the client will continue to wait

if the server terminates connection due to a timeout. This

fix sends the application into existing code for handling a

broken connection.

Line 178

Change

msg = receive(appl_timeout);

To

60

goto broken;//application terminates connection

Fixes – Problem that the client will continue to wait

if the server terminates connection due to a timeout. This

fix sends the application into existing code for handling a

broken connection.

Line 217

Change

msg = receive(appl_timeout);

To

goto broken;//application terminates connection

Fixes – Problem that the client will continue to wait

if the server terminates connection due to a timeout. This

fix sends the application into existing code for handling a

broken connection.

IPSuite-20040322\Applications\TCPApp\TCPClient.cc

Line 293

Inserted

//added to fix prob with close

abort = new cMessage("TCP_ABORT", TCP_C_ABORT);

abort->addPar("src_port") = local_port;

abort->addPar("src_addr") = local_addr;

abort->addPar("dest_port") = rem_port;

abort->addPar("dest_addr") = rem_addr;

 abort->addPar("tcp_conn_id") = tcp_conn_id;

61

 //no data bits to send

abort->setLength(0);

 //no data packets to receive

abort->addPar("rec_pks") = 0;

 //make delay checking possible

abort->setTimestamp();

 //send "receive" to "TcpModule"

send(abort, "out");

Fixes – TCP module waits for the client sends a close

message to the client only once and then waits for a reply.

For large messages, the client is still processing its

queues and does not send the reply expected. This fix will

use the existing abort mechanism to continue the process of

closing the connection.

IPSuite-20040322\Nodes\IPSuite\TCPUpperLayers.ned

Line 63-64

Change

//message_length = input(8000, Number of bits to

be received: ");

message_length = 8000;

To

message_length = input(8000, "Number of bits to

be received: ");

//message_length = 8000;

62

 Fixes – This change allows the message length to be

specified at run time.

IPSuite-20040322\Transport\TCP\tcpmodule.cc

 Line 84

Add

cOutVector *goodput; //jak for recording goodput

cOutVector *avg_goodput; //jak for recording

goodput

cOutVector *rec_bits;//jak for recording goodput

Fixes – Adds the vectors needed to record goodput

calculations.

Line 92

Add

//jak for goodput calculations

cQueue bw_msg_q; //store messages for goodput

calcs

simtime_t span; //length of time between messages

for goodput calculation

double bits; //length of all msgs in bw_msg_q

Fixes – Variables needed to calculate goodput.

Line 191

Add

~TcpModule();

63

Fixes – When closing OMNeT or rebuilding a network,

windows reports a memory access violation for networks that

use the TCP module. This adds a destructor that will fix

one of the problems causing this error. This fix is from

Andras Varga and is included in subsequent releases of

IPSuite.

Line 195

//Added per Andres to fix error when terminating

application

TcpModule::~TcpModule()

{

 // clear unused TCB or active connections

 TcbList::iterator iter = tcb_list.begin();

 while (iter != tcb_list.end())

 {

 TcpTcb *tcb_block = (TcpTcb *) iter->second;

 while (tcb_block->tcp_rcv_rec_list.length() >

0) {

 SegRecord* seg_rec = (SegRecord *)

tcb_block->tcp_rcv_rec_list.pop();

 delete seg_rec->pdata;

 }

 delete tcb_block;

 iter ++;

 }

64

while (!bw_msg_q.empty())

delete((cMessage *)bw_msg_q.pop());

delete tcpdelay;

delete cwnd_size;

delete send_seq_no;

delete rec_ack_no;

delete goodput; //jak for goodput

delete avg_goodput; //jak for goodput

}

Fixes – When closing OMNeT or rebuilding a network,

windows reports a memory access violation for networks that

use the TCP module. This adds a destructor and populates

it with code that was in the finish method. This fix will

correct one of the problems causing this error. This fix

is from Andras Varga and is included in subsequent releases

of IPSuite.

Line 238

Add

//jak – name vectors for recording goodput

goodput = new cOutVector("Goodput");

avg_goodput = new cOutVector("Avg_Goodput");

rec_bits = new cOutVector("Rec_Bits");

span = strToSimtime("2s"); //jak-time span to

consider in goodput calcs

bits = 0;//jak - initialize

65

WATCH(bits);//jak for goodput

Fixes – Initialize vectors and variables for goodput

calculations.

Line 259

Delete

// clear unused TCB or active connections

TcbList::iterator iter = tcb_list.begin();

while (iter != tcb_list.end())

{

 TcpTcb *tcb_block = (TcpTcb *) iter->second;

 while (tcb_block->tcp_rcv_rec_list.length() >

0) {

 SegRecord* seg_rec = (SegRecord *)

tcb_block->tcp_rcv_rec_list.pop();

 delete seg_rec->pdata;

 }

 delete tcb_block;

 iter ++;

}

delete tcpdelay;

delete cwnd_size;

delete send_seq_no;

delete rec_ack_no;

delete rec_seq_no;

66

Fixes – When closing OMNeT or rebuilding a network,

windows reports a memory access violation for networks that

use the TCP module. This adds a destructor that will fix

one of the problems causing this error. This fix is from

Andras Varga and is included in subsequent releases of

IPSuite.

Line 755-776

Uncomment

Fixes – Client application will continue to wait for a

closed message from TCP module until a timeout is received

and an abort is initiated. This code ends a closed message

to the client application even if connection not being

aborted. Unknown why it was commented out other than the

mechanism does not work if the complete message being

received is large.

Line 850

Add

//jak – calculate goodput whenever a packet is

received from the server.

if (eventsource == FROM_IP)

{

 //remove messages older than the window of

interest

 while (!bw_msg_q.empty() && ((((cMessage

*)bw_msg_q.tail())->timestamp())<=(simTime()-span)))

 delete ((cMessage *)bw_msg_q.pop());

67

 double qbits = numBitsInQueue(bw_msg_q);

//calc total bits received in window

 if (qbits>0)

 goodput->record((qbits-((cMessage

*)bw_msg_q.tail())->length())/(simTime()-((cMessage

*)bw_msg_q.tail())->timestamp())); //divide the bits

received by the time span – oldest message is removed to

allow the bits to reflect those received in an actual span

of time and make the calculation more accurate.

 avg_goodput->record(bits/simTime());

//average over entire run

 if (!bw_msg_q.empty())

 rec_bits->record(((cMessage

*)bw_msg_q.tail())->length());//record bits received

}

Fixes – Calculates goodput whenever a new message is

received from the server.

Line 2255

Add

 //jak – record bits received

cMessage *bw_msg = (cMessage *) pdata->dup();

 bits = bits+bw_msg->length();

 bw_msg->setTimestamp(simTime());

 bw_msg_q.insert(bw_msg);

Fixes – Records the size of the message received to

perform goodput calculations.

68

Line 2261

Add

//jak - flushes duplicated part of message in

current packet

flushQueue(bw_msg_q, (tcb_block->rcv_nxt -

tcb_block->seg_seq), false);

bits = bits - ((tcb_block->rcv_nxt - tcb_block-

>seg_seq)*8);

Fixes – Flushes that part of a message that has

already been recorded to prevent double counting a message.

Line 2268

Add

 //jak – record parts of messages received out of

order for accurate reflection of goodput

cMessage *bw_msg = (cMessage *) pdata->dup();

 bits = bits+bw_msg->length();

 bw_msg->setTimestamp(simTime());

 bw_msg_q.insert(bw_msg);

Fixes – Records messages that were received out of

order to ensure accurate accounting for goodput

calculations.

IPSuite-20040322\Transport\UDP\UDPProcessing.cc

Line 147

69

Add

ipIfPacket->setDiffServCodePoint(udpIfPacket-

>getCodePoint()); //--added by jak to transfer DSCP

to IP packet

Fixes – Populates the DSCP in the IP Header TOS. This

was not previously done even though the mechanism existed.

B. COMPONENTS

//---

// file: INE.ned

// author: James Knoll

//

// Date: 13 May, 2004

//

// This is an implementation of an INE based upon the

// Taclane description found in Analysis of Quintum

// Tenor Vocoding for Support for Secure Voice, written by

// Hucke, Ed, Nguyen, Quang, Teng, Weden, Goodrich, Callis,

// Bart, Ron, Wadler, Andrew, Arendale, Ron, Et. al.

// It is composed of this file, an encoder, and a decoder.

// Plain text is sent in the plainIn gate and is encrypted

// and sent out the cypherOut gate. Encrypted packets are

// sent into the INE via the cipherIn gate and is decrypted

// and output through the plainOut gate. The INE was

// created to change the length of the IP header rather

// than encapsulating the message in a new message in order

70

// to save on resources. As a result the decrypted packets

// still contain padding in the IP header, but are the

// correct length in the UDP header.

//---

import

 "LinkLayer",

 "INEEncode",

 "INEDecode";

module INE

 gates:

 in: plainIn; //unencoded packets in

 in: cypherIn; //encoded packets in

 out: plainOut; //decoded packets out

 out: cypherOut;//encoded packets out

 submodules:

 plainProcess: INEEncode; //Encodes the plaintext

 display: "p=100,60;i=fork";

 cypherProcess: INEDecode; //Decodes the cyphertext

 display: "p=160,60;i=fork";

 plainnetIf : LinkLayer;..//Handles the Link layer

information

 parameters:

 NWIName = "PPPModule";

71

 display: "p=80,120,row;i=iface";

 cyphernetIf : LinkLayer; // Handles the Link

layer information

 parameters:

 NWIName = "PPPModule";

 display: "p=120,120,row;i=iface";

 connections nocheck:

 // connections to network outside

 plainIn --> plainnetIf.physIn;

 plainnetIf.inputQueueOut --> plainProcess.physIn;

 cyphernetIf.outputQueueIn <-- plainProcess.physOut;

 cypherOut <-- cyphernetIf.physOut;

 cypherIn --> cyphernetIf.physIn;

 cyphernetIf.inputQueueOut --> cypherProcess.physIn;

 plainnetIf.outputQueueIn <-- cypherProcess.physOut;

 plainOut <-- plainnetIf.physOut;

endmodule

//---

// file: INEEncode.ned

// author: James Knoll

//

72

// Date: 13 May, 2004

//

// An implementation of an INE encoder based upon the

// Taclane description found in Analysis of Quintum

// Tenor Vocoding for Support for Secure Voice, written by

// Hucke, Ed, Nguyen, Quang, Teng, Weden, Goodrich, Callis,

// Bart, Ron, Wadler, Andrew, Arendale, Ron, Et. al.

//---

simple INEEncode

 parameters:

 gates:

 in: physIn; //in from network interface

 out: physOut;//out to network interface

endsimple

//---

// file: INEEncode.cc

// author: James Knoll

//

// Date: 13 May, 2004

//

// An implementation of an INE encoder based upon the

// Taclane description found in Analysis of Quintum

// Tenor Vocoding for Support for Secure Voice, written by

73

// Hucke, Ed, Nguyen, Quang, Teng, Weden, Goodrich, Callis,

// Bart, Ron, Wadler, Andrew, Arendale, Ron, Et. al.

//---

#include <omnetpp.h>

class INEEncode : public cSimpleModule

{

 public:

 Module_Class_Members(INEEncode, cSimpleModule, 0);

 virtual void handleMessage(cMessage *msg);

};

Define_Module(INEEncode);

void INEEncode::handleMessage(cMessage *msg)

{

 double msg_length = msg->length()/8; //length in Bytes

 //Calculate encoded length by add 12 bytes of security

 // information to the message and then pad to a 48 byte

 // increment. Another 20 bytes of security information

 // is then added along with a new 20 byte IP header.

 msg_length = ceil((msg_length+12)/48)*48+40;

74

 msg->setLength(msg_length*8); //length in bits

 send(msg, "physOut");

}

//---

// file: INEDecode.ned

// author: James Knoll

//

// Date: 13 May, 2004

//

// An implementation of an INE decoder based upon the

// Taclane description found in Analysis of Quintum

// Tenor Vocoding for Support for Secure Voice, written by

// Hucke, Ed, Nguyen, Quang, Teng, Weden, Goodrich, Callis,

// Bart, Ron, Wadler, Andrew, Arendale, Ron, Et. al.

//---

simple INEDecode

 parameters:

 gates:

 in: physIn; //in from network interface

 out: physOut;//out to network interface

endsimple

75

//---

// file: INEDecode.cc

// author: James Knoll

//

// Date: 13 May, 2004

//

// An implementation of an INE encoder based upon the

// Taclane description found in Analysis of Quintum

// Tenor Vocoding for Support for Secure Voice, written by

// Hucke, Ed, Nguyen, Quang, Teng, Weden, Goodrich, Callis,

// Bart, Ron, Wadler, Andrew, Arendale, Ron, Et. al.

//---

#include <omnetpp.h>

class INEDecode : public cSimpleModule

{

 public:

 Module_Class_Members(INEDecode, cSimpleModule, 0);

 virtual void handleMessage(cMessage *msg);

};

Define_Module(INEDecode);

void INEDecode::handleMessage(cMessage *msg)

76

{

 double msg_length = msg->length()/8; //Length in bytes

 //To find the length of the decoded packet, the

 // 20 bytes of IP header and the 20 bytes of security

 // header are first removed. The padding is not

 // removed, but the additional 12 bytes of security

 // header is. For these simulation the additional

 // padding in the IP header is not important since the

 // UDP header will still be the original length.

 msg_length = msg_length-40-12; //does not remove

padding

 msg->setLength(msg_length*8); //length in bits

 send(msg,"physOut");

}

//---

// file: trafficUDPHost.ned

// author: James Knoll

//

// Date: 26 Apr, 2004

//

// UDP application created to simulate background network

77

// traffic. The client Continuously transmits based upon

// the data rate specified. The server application handles

// incoming messages by recording the desired metrics such

// as delay and then deleting the packet. A UDP

// application was chosen to simulate network traffic since

// it was able to be adjusted to easily provide different

// levels of network saturation and because the metrics

// were easier to obtain from a single application.

//---

import

 "LinkLayer",

 "NetworkLayer",

 "trafficUDPUpperLayers";

module trafficUDPHost

 parameters:

 dest_addr : string, //list of destination addresses

 local_port : numeric const, //client port

 dest_port : numeric, //server port

 msg_length : numeric, // Max length of a message

(bits)

 start_delay : bool, //delay start of transmit?

 traffic_rate : numeric, //rate traffic to be

generated

78

 local_addr : string,

 numOfPorts : numeric, //allows connection to

multiple nodes

 routingFile : string; //file name of routing file

for this host

 gates:

 in: in[];

 out: out[];

 submodules:

 udpApp: trafficUDPUpperLayers;

 parameters:

 dest_addr = dest_addr,

 local_port = local_port,

 dest_port = dest_port,

 msg_length = msg_length,

 start_delay = start_delay,

 traffic_rate = traffic_rate,

 local_addr = local_addr,

 udpClient1Name = "trafficUDPClientApp",

//specifies app to use

 udpServer1Name = "trafficUDPServerApp";

//specifies app to use

 display: "p=89,68;b=40,24,rect";

 networkLayer: NetworkLayer;

 parameters:

79

 IPForward = 0, //this node will not

forward traffic intended for a different host

 numOfPorts = numOfPorts,

 routingFile = routingFile;

 gatesizes:

 physIn[numOfPorts],

 physOut[numOfPorts];

 display: "p=87,155;i=fork";

 netIf : LinkLayer[numOfPorts];

 parameters:

 NWIName = "PPPModule"; //specify link

layer to use

 display: "p=80,220,row;i=iface";

 connections nocheck:

 // transport connections

 networkLayer.UDPOut --> udpApp.from_ip;

 networkLayer.UDPIn <-- udpApp.to_ip;

 // connections to other nodes

 for i=0..numOfPorts-1 do

 in[i] --> netIf[i].physIn;

 out[i] <-- netIf[i].physOut;

 netIf[i].inputQueueOut -->

networkLayer.physIn[i];

80

 netIf[i].outputQueueIn <--

networkLayer.physOut[i];

 endfor;

endmodule

//---

// file: trafficUDPUpperLayers.ned

// author: James Knoll

//

// Date: 26 Apr, 2004

//

// UDP application created to simulate background network

// traffic. The client continuously transmits based upon

// the data rate and the server discards the messages.

//---

import "UDPProcessing";

import "trafficUDPApp";

module trafficUDPUpperLayers

 parameters:

 dest_addr : string, //list of destination

addresses

 local_port : numeric const, //client port

 dest_port : numeric, //server port

81

 msg_length : numeric, // Max length of a message

(bits)

 start_delay : bool, //delay start of transmit

 traffic_rate : numeric, //rate traffic is to be

generated

 local_addr : string,

 udpClient1Name : string, //client app to use

 udpServer1Name : string; //server app to use

 gates:

 in: from_ip;

 out: to_ip;

 submodules:

 udpProcessing: UDPProcessing;

 gatesizes:

 from_application[2],

 to_application[2];

 display: "p=94,105;i=fork";

 udpClient1: udpClient1Name like trafficUDPApp;

 parameters:

 dest_addr = dest_addr,

 local_port = local_port,

 dest_port = dest_port,

 msg_length = msg_length,

 start_delay = start_delay,

 traffic_rate = traffic_rate,

82

 local_addr = local_addr;

 display: "p=134,43;b=48,32,rect";

 udpServer1: udpServer1Name like trafficUDPApp;

 parameters:

 local_port=dest_port;

 display: "p=51,42;b=40,24,rect";

 connections nocheck:

 from_ip --> udpProcessing.from_ip;

 to_ip <-- udpProcessing.to_ip;

 udpProcessing.to_application[0] -->

udpClient1.from_udp;

 udpProcessing.from_application[0] <--

udpClient1.to_udp;

 udpProcessing.to_application[1] -->

udpServer1.from_udp;

 udpProcessing.from_application[1] <--

udpServer1.to_udp;

 display: "p=10,10;b=157,140,rect";

endmodule

//---

// file: trafficUDPApp.ned

// author: James Knoll

83

//

// Date: 26 Apr, 2004

//

// UDP application created to simulate background network

// traffic. The client continuously transmits based upon

// the data rate and the server discards the messages.

//---

//

// Peer of trafficUDPServerApp. Sends UDP packets to

// randomly chosen destinations at random intervals.

// Destinations are chosen from the dest_addresses

// parameter.

//

simple trafficUDPClientApp

 parameters:

 local_port : numeric const,

 dest_port : numeric const, //must match far end

server local port

 msg_length : numeric const, // Max length of a

message (bits)

 start_delay : bool, //delay start of transmit

 traffic_rate : numeric, //rate traffic to be

generated

 local_addr : string,

84

 dest_addr: string; // destination IP address

 gates:

 in: from_udp;

 out: to_udp;

endsimple

//

// Peer of trafficUDPClientApp. At the moment just discards

// received packets.

//

simple trafficUDPServerApp

 parameters:

 local_port : numeric const;

 gates:

 in: from_udp;

 out: to_udp;

endsimple

//---

// file: trafficUDPApp.h

// author: James Knoll

//

// Date: 26 Apr, 2004

//

// UDP application created to simulate background network

85

// traffic. The client continuously transmits based upon

// the data rate and the server discards the messages.

//---

#ifndef __TRAFFICUDPAPP_H__

#define __TRAFFICUDPAPP_H__

#include <vector>

#include <omnetpp.h>

#include "basic_consts.h"

#include "IPInterfacePacket.h"

//

// UDP server app.

//

class trafficUDPServerApp : public cSimpleModule

{

 protected:

 int numReceived; //number of messages received

 cOutVector delay_v; //records delay

 cOutVector receive_v;//records average number of

messages received per second

 public:

86

 Module_Class_Members(trafficUDPServerApp,

cSimpleModule, 0);

 virtual void initialize();

 virtual void handleMessage(cMessage *msg);

};

//

// UDP client app.

//

class trafficUDPClientApp : public cSimpleModule

{

 protected:

 enum MsgKinds //types of messages

 {

 TRAFFIC,

 VOIP_DATA,

 DATA_COLLECT,

 TIMEOUT_THINK

 };

std::string nodeName; //used to determine which

application to use

int localPort, destPort; //numbers not important as

long as local matches remote dest

int msgLength; //length of each message

87

 bool startDelay;//delay before starting to transmit?

 double trafficRate;//bits per second to send

 IPAddress localAddr;

std::vector<IPAddress> destAddresses; //ability to

randomly send to diff addrs

 double msgInterval; //time between messages

int numSent; //number of messages sent

 cOutVector send_v; //average number of msgs sent per

second

 // chooses random destination address

 IPAddress chooseDestAddr();

 public:

 Module_Class_Members(trafficUDPClientApp,

cSimpleModule, 0);

 virtual void initialize();

 virtual void handleMessage(cMessage *msg);

};

#endif

//---

88

// file: trafficUDPApp.cc

// author: James Knoll

//

// Date: 26 Apr, 2004

//

// UDP application created to simulate background network

// traffic. The client continuously transmits based upon

// the data rate and the server discards the messages.

//---

#include <omnetpp.h>

#include "trafficUDPApp.h"

#include "UDPInterfacePacket_m.h"

#include "StringTokenizer.h"

Define_Module(trafficUDPServerApp);

void trafficUDPServerApp::initialize()

{

 numReceived = 0; //number of messages received

 WATCH(numReceived);

 delay_v.setName("delay_time"); //delay between when

message sent and received

89

 receive_v.setName("receive_rate"); //msg received

divided by elapsed simTime

}

//Receive message, record metrics, and discard

void trafficUDPServerApp::handleMessage(cMessage *msg)

{

 //cast msg as UDP Interface Packet and retrieve payload

 UDPInterfacePacket *udpIfPacket =

check_and_cast<UDPInterfacePacket *>(msg);

 cMessage *payload = udpIfPacket->decapsulate();

 //get specifics about message and print

 IPAddress src = udpIfPacket->getSrcAddr();

 IPAddress dest = udpIfPacket->getDestAddr();

 int sentPort = udpIfPacket->getSrcPort();

 int recPort = udpIfPacket->getDestPort();

 simtime_t sent = payload->creationTime();

 simtime_t arrive = udpIfPacket->arrivalTime();

 ev << "Packet received: " << payload << endl;

 ev << "Payload length: " << (payload->length()/8) << "

bytes" << endl;

90

 ev << "Src/Port: " << src << " / " << sentPort << "

";

 ev << "Dest/Port: " << dest << " / " << recPort <<

endl;

 ev << "Sent/Arrive: " << sent << " / " << arrive <<

endl;

 //record delay and average number received

 delay_v.record(simTime()-sent);

 numReceived++;

 receive_v.record(numReceived/simTime());

 //discard msg

 delete udpIfPacket;

 delete payload;

}

//===

Define_Module(trafficUDPClientApp);

void trafficUDPClientApp::initialize()

{

 send_v.setName("send_rate"); //set name of vector

91

 //get parameters

 localPort = par("local_port");

 destPort = par("dest_port");

 msgLength = par("msg_length");

 startDelay = par("start_delay");

 trafficRate = par("traffic_rate");

 const char *localAddress = par("local_addr");

 localAddr =IPAddress(localAddress);

 //parse destination addresses

 const char *destAddrs = par("dest_addr");

 StringTokenizer tokenizer(destAddrs);

 const char *token;

 while ((token = tokenizer.nextToken())!=NULL)

 destAddresses.push_back(IPAddress(token));

 msgInterval = (msgLength/trafficRate);//how fast do we

send messages

 //initialize

 numSent = 0;

 WATCH(numSent);

 cMessage *timer = new cMessage("sendTimer"); //self

message for next transmit

92

 //schedule first message

 if (startDelay)

 scheduleAt(msgInterval+dblrand(), timer);

 else

 scheduleAt(dblrand(), timer);

}

//handle incoming msgs

void trafficUDPClientApp::handleMessage(cMessage *msg)

{

 scheduleAt(simTime()+msgInterval, msg); //schedule next

message

 char msgName[32];

 sprintf(msgName,"udpAppData-%d", numSent);

 //create payload

 cMessage *payload = new cMessage(msgName);

 payload->setLength(msgLength);

 //header information to be passed on

93

 UDPInterfacePacket *udpIfPacket = new

UDPInterfacePacket();

 udpIfPacket->encapsulate(payload);

 IPAddress destAddr = chooseDestAddr();

 IPAddress locAddr = localAddr;

 udpIfPacket->setSrcAddr(locAddr);

 udpIfPacket->setDestAddr(destAddr);

 udpIfPacket->setSrcPort(localPort);

 udpIfPacket->setDestPort(destPort);

 //print header info to user interface

 ev << "Packet sent: " << payload << endl;

 ev << "Payload length: " << (payload->length()/8) << "

bytes" << endl;

 ev << "Src/Port: " << locAddr << " / " << localPort <<

endl;

 ev << "Dest/Port: " << destAddr << " / " << destPort <<

endl;

 send(udpIfPacket, "to_udp"); //send msg

 //record average number of messages sent

 numSent++;

 send_v.record(numSent/simTime());

94

}

//randomly choose a destination

IPAddress trafficUDPClientApp::chooseDestAddr()

{

 int k = intrand(destAddresses.size());

 return destAddresses[k];

}

//---

// file: voipUDPHost.ned

// author: James Knoll

//

// Date: 13 Apr, 2004

//

// This is a UDP application to send a burst of

// conversation to the specified address, and then wait for

// a reply. A conversation should be started by only one

// node and the delay before replying must be longer than

// the delay or the nodes will step on each other. Call

// cycle is accomplished by setting a timer within both

// nodes to start and stop conversations at a predetermined

// interval. If random intervals are used, the same value

// should be passed to both nodes in the conversation since

// there is not any synchronization mechanism in place.

95

//---

import

 "LinkLayer",

 "NetworkLayer",

 "voipUDPUpperLayers";

module voipUDPHost

 parameters:

 local_addr : string,

 dest_addr: string, // Destination IP address

 local_port : numeric const,

 dest_port : numeric const, //must match far end

local port

 voice_length : numeric const, //length of a voice

conversation segment

 initiate : bool, //delay start of transmit on

receiving end

 codec_rate : numeric const, //analog to digital

conversion encoding

 reply_delay :numeric const, //Time to pause before

a response begins

 frame_size :numeric const, //length of a frame

 talk_cycle:numeric, //percent of off hook time

 call_length: numeric, //length of a call

96

 init_delay: numeric; //amount to delay before the

first conversation

 numOfPorts : numeric const, //allows connection to

multiple nodes

 routingFile : string; /routing file to use

 gates:

 in: in[];

 out: out[];

 submodules:

 udpApp: voipUDPUpperLayers;

 parameters:

 local_addr = local_addr,

 dest_addr = dest_addr,

 local_port = local_port,

 dest_port = dest_port,

 voice_length = voice_length,

 initiate = initiate,

 codec_rate = codec_rate,

 reply_delay = reply_delay,

 talk_cycle = talk_cycle,

 call_length = call_length,

 init_delay = init_delay,

 frame_size = frame_size,

 udpClient1Name = "voipUDPClientApp";

//client app to use

97

 display: "p=89,68;b=40,24,rect";

 networkLayer: NetworkLayer;

 parameters:

 IPForward = 0, //node does not forward

 numOfPorts = numOfPorts,

 routingFile = routingFile; //routing file

to use

 gatesizes:

 physIn[numOfPorts],

 physOut[numOfPorts];

 display: "p=87,155;i=fork";

 netIf : LinkLayer[numOfPorts];

 parameters:

 NWIName = "PPPModule"; //link layer to use

 display: "p=80,220,row;i=iface";

 connections nocheck:

 // transport connections

 networkLayer.UDPOut --> udpApp.from_ip;

 networkLayer.UDPIn <-- udpApp.to_ip;

 // connections to other nodes

 for i=0..numOfPorts-1 do

 in[i] --> netIf[i].physIn;

 out[i] <-- netIf[i].physOut;

98

 netIf[i].inputQueueOut -->

networkLayer.physIn[i];

 netIf[i].outputQueueIn <--

networkLayer.physOut[i];

 endfor;

endmodule

//---

// file: voipUDPUpperLayers.ned

// author: James Knoll

//

// Date: 13 Apr, 2004

//

// This is a UDP application to send a burst of

// conversation to the specified address, and then wait for

// a reply.

//---

import "UDPProcessing";

import "voipUDPApp";

module voipUDPUpperLayers

 parameters:

 local_addr : string, //local IP address

 dest_addr: string, // Destination IP address

99

 local_port : numeric const,

 dest_port : numeric const, //must match far end

local port

 voice_length : numeric const, //length of a voice

conversation segment

 initiate : bool, //delay start of transmit on

receiving end

 codec_rate : numeric const, //analog to digital

conversion encoding

 reply_delay :numeric const, //Time to pause before

a response begins

 frame_size :numeric const, //length of a frame

 talk_cycle:numeric, //percent of off hook time

 call_length: numeric, //length of a call

 init_delay: numeric; //amount to delay before the

first conversation

 udpClient1Name : string; //client to use

 gates:

 in: from_ip;

 out: to_ip;

 submodules:

 udpProcessing: UDPProcessing;

 gatesizes:

 from_application[1],

 to_application[1];

 display: "p=94,105;i=fork";

100

 udpClient1: udpClient1Name like voipUDPApp;

 parameters:

 local_addr = local_addr,

 dest_addr = dest_addr,

 local_port = local_port,

 dest_port = dest_port,

 voice_length = voice_length,

 initiate = initiate,

 codec_rate = codec_rate,

 reply_delay = reply_delay,

 frame_size = frame_size,

 talk_cycle = talk_cycle,

 call_length = call_length,

 init_delay = init_delay;

 display: "p=134,43;b=48,32,rect";

 connections nocheck:

 from_ip --> udpProcessing.from_ip;

 to_ip <-- udpProcessing.to_ip;

 udpProcessing.to_application[0] -->

udpClient1.from_udp;

 udpProcessing.from_application[0] <--

udpClient1.to_udp;

 display: "p=10,10;b=157,140,rect";

101

endmodule

//---

// file: voipUDPApp.ned

// author: James Knoll

//

// Date: 13 Apr, 2004

//

// This is a UDP application to send a burst of

// conversation to the specified address, and then wait for

// a reply.

//---

simple voipUDPClientApp

 parameters:

 local_addr : string, //local IP address

 dest_addr: string, // Destination IP address

 local_port : numeric const, //local port number

 dest_port : numeric const, //must match far end

local port

 voice_length : numeric const, //length of a voice

conversation segment

 initiate : bool, //delay start of transmit on

receiving end

102

 codec_rate : numeric const, //analog to digital

conversion encoding

 reply_delay :numeric const, //Time to pause before

a response begins

 frame_size :numeric const, //length of a frame

 talk_cycle:numeric, //percent of off hook time

 call_length: numeric, //length of a call

 init_delay: numeric; //amount to delay before the

first conversation

 gates:

 in: from_udp;

 out: to_udp;

endsimple

//---

// file: voipUDPApp.h

// author: James Knoll

//

// Date: 13 Apr, 2004

//

// This is a UDP application to send a burst of

// conversation to the specified address, and then wait for

// a reply.

//---

103

#ifndef __VOIPUDPAPP_H__

#define __VOIPUDPAPP_H__

#include <vector>

#include <omnetpp.h>

#include "basic_consts.h"

#include "IPInterfacePacket.h"

class voipUDPClientApp : public cSimpleModule

{

 protected:

 enum MsgKinds //types of msgs

 {

 TRAFFIC,

 VOIP_DATA,

 DATA_COLLECT,

 TIMEOUT_THINK,

 TIMEOUT_CALL

 };

int localPort, destPort; //dest port must match remote

local

 IPAddress localAddr;

IPAddress destAddr;

104

 double voiceLength; //length of voice transmission in

seconds

 bool initiate; //initiate conversation?

 double codecRate; //encoding rate

 double replyDelay; //delay before beginning to speak

 double frameSize; //length of a frame in seconds

 double talkCycle; //off hook to on hook ratio

 simtime_t callLength;//length of a call

 simtime_t initDelay; //time to delay before beginning

conversation

int burstCount; //number of msgs left to send

 int burstNumber; //number of msgs in a burst

 int burstSize; //size of each msg payload

 //jitter calculation

 double delay;

 double old_delay;

 double jitter;

 //current state

 bool talk;

 bool listen;

 bool call_estab;

105

 //self msgs

 cMessage *timeout_think;

 cMessage *timeout_call;

 cMessage *voip_data;

 //metrics

 int numSent;

int numReceived;

 simtime_t lastRec;

 simtime_t lastSend;

 cOutVector send_v;

 cOutVector delay_v;

cOutVector receive_v;

 cOutVector inst_send_v;

 cOutVector inst_rec_v;

 cOutVector jitter_v;

 //handles creating and sending a msg

 virtual void sendMessage();

 public:

 Module_Class_Members(voipUDPClientApp, cSimpleModule,

0);

 virtual void initialize();

106

 virtual void handleMessage(cMessage *msg);

};

#endif

//---

// file: voipUDPApp.cc

// author: James Knoll

//

// Date: 13 Apr, 2004

//

// This is a UDP application to send a burst of

// conversation to the specified address, and then wait for

// a reply.

//---

#include <omnetpp.h>

#include "voipUDPApp.h"

#include "UDPInterfacePacket_m.h"

#include "StringTokenizer.h"

Define_Module(voipUDPClientApp);

void voipUDPClientApp::initialize()

{

107

 //set vector names

 send_v.setName("send_rate");

 receive_v.setName("receive_rate");

 inst_send_v.setName("inst_send_rate");

 inst_rec_v.setName("inst_rec_rate");

 jitter_v.setName("jitter");

 delay_v.setName("delay_time");

 //initialize

 old_delay = 0;

 jitter = 0;

 delay = 0;

 lastRec = simTime();

 lastSend = simTime();

 call_estab = false;

 numSent = 0;

 numReceived = 0;

 //read parameters

 localPort = par("local_port");

 destPort = par("dest_port");

 voiceLength = par("voice_length"); //length of voice

transmission in seconds

108

 initiate = par("initiate"); //does this host initiate

conversation

 codecRate = par("codec_rate"); //kbps of codec

 replyDelay = par("reply_delay"); //delay before

beginning to speak

 frameSize = par("frame_size"); //length of a frame in

seconds

 talkCycle = par("talk_cycle"); //off hook to on hook

ratio

 callLength = par("call_length"); //length of a call

 initDelay = par("init_delay"); //time to delay before

beginning conversation

 //convert address strings to IPAddress

 const char *localAddress = par("local_addr");

 localAddr =IPAddress(localAddress);

 const char *destAddress = par("dest_addr");

 destAddr =IPAddress(destAddress);

 burstNumber = ceil(voiceLength/frameSize); //number of

msgs in a burst

 burstSize = (frameSize*codecRate)+(12*8); //size of

msg with RTP header

109

 //timeout msg creation

 timeout_think = new

cMessage("TIMEOUT_THINK",TIMEOUT_THINK); //if timer

expires before next voice packet received, node will begin

transmitting

 timeout_call = new

cMessage("TIMEOUT_CALL",TIMEOUT_CALL); //timer to tell when

to go on and off hook

 voip_data = new cMessage("VOIP_DATA", VOIP_DATA);

//schedules next send

 scheduleAt(simTime()+initDelay, timeout_call);

//schedule first transmission

}

void voipUDPClientApp::handleMessage(cMessage *msg)

{

 //if msg is from remote destination

 if ((!(msg->isSelfMessage())))

 {

 ev<<"Received a message from remote dest \n";

 if (listen) //in listen, reschedule think timer to

begin transmitting

 {

110

 if (timeout_think->isScheduled())

 {

 cancelEvent(timeout_think);

 }

 scheduleAt(simTime()+replyDelay,

timeout_think);

 }

 else if (!talk) //enter listen and schedule delay

 {

 listen=true;

 scheduleAt(simTime()+replyDelay,

timeout_think);

 ev<< "Receiving conversation. Enter listen

mode. \n";

 }

 //get payload

 UDPInterfacePacket *udpIfPacket =

check_and_cast<UDPInterfacePacket *>(msg);

 cMessage *payload = udpIfPacket->decapsulate();

 //parse and print

 IPAddress src = udpIfPacket->getSrcAddr();

 IPAddress dest = udpIfPacket->getDestAddr();

 int sentPort = udpIfPacket->getSrcPort();

111

 int recPort = udpIfPacket->getDestPort();

 simtime_t sent = payload->creationTime();

 simtime_t arrive = udpIfPacket->arrivalTime();

 ev << "Packet received: " << payload << endl;

 ev << "Payload length: " << (payload->length()/8)

<< " bytes" << endl;

 ev << "Src/Port: " << src << " / " << sentPort << "

";

 ev << "Dest/Port: " << dest << " / " << recPort <<

endl;

 ev << "Sent/Arrive: " << sent << " / " << arrive <<

endl;

 //record metrics

 delay= arrive-sent;

 delay_v.record(delay);

 numReceived++;

 receive_v.record(numReceived/simTime());

 inst_rec_v.record(payload->length()/(simTime()-

lastRec));

 lastRec = simTime();

 jitter = jitter+(abs(old_delay-delay)-jitter)/16;

112

 old_delay = delay;

 jitter_v.record(jitter);

 //clean up

 delete udpIfPacket;

 delete payload;

 }

 //if message is to transmit a voip msg

 else if ((msg->kind()==VOIP_DATA) && msg-

>isSelfMessage())

 {

 if (burstCount>0)

 {

 sendMessage();

 }

 else

 error("No message to send"); //should not

reach here

 }

 //if msg is to start sending

 else if ((msg->kind() == TIMEOUT_THINK))

 {

 burstCount = burstNumber;

 talk=true;

113

 listen=false;

 if (call_estab)

 sendMessage();

 }

 //if msg is for call cycle

 else if ((msg->kind() == TIMEOUT_CALL))

 {

 if (!call_estab) //start call

 {

 ev<<"Begin call \n";

 call_estab = true;

 if (initiate) //does this node initiate the

conversation?

 {

 if (timeout_think->isScheduled())//left over

timeout

 cancelEvent(timeout_think);

 scheduleAt(simTime()+frameSize,

timeout_think); //schedule first send

 talk=true;

 listen=false;

 }

 scheduleAt(simTime()+callLength, timeout_call);

//schedule time to terminate call

114

 }

 else //end call

 {

 call_estab = false;

 if (timeout_think->isScheduled())

 cancelEvent(timeout_think);

 if (voip_data->isScheduled())

 cancelEvent(voip_data);

 talk=false;

 listen=false;

 scheduleAt(simTime()+ ((callLength/talkCycle*

100)- callLength), timeout_call); //schedule time of next

call

 }

 }

 else

 {

 error("Could not determine origin of message(%d)

(forgot to add timeout?)\n",msg->kind()); //should not get

here

 }

}

//create and send msg

void voipUDPClientApp::sendMessage()

115

{

 char msgName[32];

 sprintf(msgName,"udpAppData-%d", numSent);

 //create payload

 cMessage *payload = new cMessage(msgName, VOIP_DATA);

 payload->setLength(burstSize);

 payload->setPriority(46);

 //header info for next layer

 UDPInterfacePacket *udpIfPacket = new

UDPInterfacePacket();

 udpIfPacket->encapsulate(payload);

 udpIfPacket->setSrcAddr(localAddr);

 udpIfPacket->setDestAddr(destAddr);

 udpIfPacket->setSrcPort(localPort);

 udpIfPacket->setDestPort(destPort);

 udpIfPacket->setCodePoint(46);

 //print info about packet

 ev << "Packet sent: " << payload << endl;

 ev << "Payload length: " << (payload->length()/8) << "

bytes" << endl;

 ev << "Src/Port: " << localAddr << " / " << localPort

<< " ";

116

 ev << "Dest/Port: " << destAddr << " / " << destPort <<

endl;

 send(udpIfPacket, "to_udp"); //send the message

 //average number sent

 numSent++;

 send_v.record(numSent/simTime());

 //packet by packet send rate in bits

 inst_send_v.record(payload->length()/(simTime()-

lastSend));

 lastSend = simTime();

 // schedule next sending

 if (burstCount>1)

 {

 scheduleAt(simTime()+frameSize, voip_data);

 burstCount--; //keep track of number left to send

 }

 else //done talking, wait for reply

 {

 talk=false;

 }

}

117

//---

// file: wredbox.ned

// author: James Knoll

//

// Date: 24 May, 2004

//

// Application to prioritize VoIP msgs and monitor

throughput. A combination of CBWFQ and WRED but not a

complete implementation. This is provided as a separate

node, but could be integrated into a router. The current

implementation only recognizes high and low priority

traffic based upon whether or not a DSCP of 46 is present

in the TOS field. Throughput is calculated and recorded

for each queue. The pass in and out gates provide a path

without

//---

simple wredApp

 parameters:

 bw_max: numeric, //maximum bandwidth to allocate

to HPQ

 win: numeric, //time span for bandwidth

calculations

 hpq_min_thresh: numeric, //minimum queue size

before implementing WRED

118

 hpq_max_thresh: numeric, //maximum queue size

before implementing WRED

 hpq_mpd: numeric, //maximum percentage of packets

to drop

 lpq_min_thresh: numeric, //minimum queue size

before implementing WRED

 lpq_max_thresh: numeric, //maximum queue size

before implementing WRED

 lpq_mpd: numeric, //maximum percentage of packets

to drop

 max_q_len: numeric, //max queue size before tail

drop

 n: numeric; //weight factor

 gates:

 in: qIn;

 out: qOut;

endsimple

module wredBox

 parameters:

 bw_max: numeric, //maximum bandwidth to allocate

to HPQ

 win: numeric; //time span for bandwidth

calculations

 gates:

119

 in: passIn;

 out: passOut;

 in: qIn;

 out: qOut;

 submodules:

 wredap: wredApp;

 parameters:

 bw_max = bw_max,

 win = win;

 display: "p=160,60;i=fork";

 netIf1 : LinkLayer;

 parameters:

 NWIName = "PPPModule";

 display: "p=80,120;i=iface";

 netIf2 : LinkLayer;

 parameters:

 NWIName = "PPPModule";

 display: "p=160,120;i=iface";

 connections:

 passIn --> netIf2.physIn;

 passOut <-- netIf2.physOut;

120

 netIf2.inputQueueOut --> netIf2.outputQueueIn;

//pass through

 qIn --> netIf1.physIn;

 qOut <-- netIf1.physOut;

 netIf1.inputQueueOut --> wredap.qIn;

 netIf1.outputQueueIn <-- wredap.qOut;

endmodule

//---

// file: wredbox.h

// author: James Knoll

//

// Date: 24 May, 2004

//

// Application to prioritize VoIP msgs and monitor

throughput. A combination of CBWFQ and WRED but not a

complete implementation. Provided as a separate node, but

could be integrated into a router.

//---

#ifndef __WREDBOX_H__

#define __WREDBOX_H__

#include <vector>

#include <omnetpp.h>

121

class wredApp : public cSimpleModule

{

 protected:

 double bwMax; //maximum bandwidth to allocate to

HPQ

 double win; //time span for bandwidth calculations

 cQueue hpq; //high priority queue

 cQueue lpq; //low priority queue

 cMessage *next_send; //self timing message

 double hpq_bits; //length of all msgs in hpq

 double lpq_bits; //length of all msgs in lpq

 cQueue hpq_bw_q; //stores msgs for bw calcs

 cQueue lpq_bw_q; //stores msgs for bw calcs

 simtime_t old_time; //oldest time to include in bw

calc

 int hpq_min_thresh; //minimum queue size before

implementing WRED

 int hpq_max_thresh; //maximum queue size before

implementing WRED

 int hpq_mpd; //maximum percentage of

packets to drop

122

 int lpq_min_thresh; //minimum queue size before

implementing WRED

 int lpq_max_thresh; //maximum queue size before

implementing WRED

 int lpq_mpd; //maximum percentage of

packets to drop

 int max_q_len; //max queue size before tail

drop

 double hpq_avg_q_len; //average length of queue

 double lpq_avg_q_len; //average length of queue

 double n; //weight factor

 cOutVector hpqsize_v; //

 cOutVector lpqsize_v;

 cOutVector hpbw_v;

 cOutVector lpbw_v;

 void sendMessage();

 void serviceQueues();

 double bw(); //calculate bandwidth used

 bool drop(int min_thresh, int max_thresh, int mpd,

double avg_q_len); //determine if drop

 public:

 Module_Class_Members(wredApp, cSimpleModule, 0);

 virtual void initialize();

123

 virtual void handleMessage(cMessage *msg);

};

#endif

//---

// file: wredbox.cc

// author: James Knoll

//

// Date: 24 May, 2004

//

// Application to prioritize VoIP msgs and monitor

throughput. A combination of CBWFQ and WRED but not a

complete implementation. Provided as a separate node, but

could be integrated into a router.

//---

#include <omnetpp.h>

#include <math.h>

#include "wredbox.h"

#include "IPDatagram.h"

Define_Module(wredApp);

void wredApp::initialize()

124

{

 //parameters

 bwMax = par("bw_max");

 win = par("win");

 hpq_min_thresh = par("hpq_min_thresh");

 hpq_max_thresh = par("hpq_max_thresh");

 hpq_mpd = par("hpq_mpd");

 lpq_min_thresh = par("lpq_min_thresh");

 lpq_max_thresh = par("lpq_max_thresh");

 lpq_mpd = par("lpq_mpd");

 max_q_len = par("max_q_len");

 n = par("n");

 //set vector names

 hpqsize_v.setName("HPQ_size");

 lpqsize_v.setName("LPQ_size");

 hpbw_v.setName("HP_BW");

 lpbw_v.setName("LP_BW");

 //initialize

 hpq_bits = 0;

 lpq_bits = 0;

 hpq_avg_q_len = 0;

 lpq_avg_q_len = 0;

125

 //timing message for servicing the queues

 next_send = new cMessage("NEXT_SEND");

}

void wredApp::handleMessage(cMessage *msg)

{

 //if timer, service queues

 if (msg->isSelfMessage())

 serviceQueues();

 //if new msg

 else

 {

 IPDatagram *ipDatagram = check_and_cast<IPDatagram

*>(msg);

 //if high pri msg, insert in hpq

 if (ipDatagram->diffServCodePoint() == 46)

 {

 hpq_avg_q_len = (hpq_avg_q_len * (1-pow(.5,n)))

+ (hpq.length() * pow(.5,n)); //wred algorithm for

weighting the queue length to damp out transient effects

 //do I drop this msg?

126

 if ((hpq.length() >= max_q_len) ||

drop(hpq_min_thresh, hpq_max_thresh, hpq_mpd,

hpq_avg_q_len))

 {

 delete (ipDatagram); //dropped

 ev<<"Drop from HPQ\n";

 }

 else

 {

 hpq.insert(ipDatagram); //store in the

queue

 }

 }

 //if low pri msg, insert in lpq

 else

 {

 lpq_avg_q_len = (lpq_avg_q_len * (1-pow(.5,n))) +

(lpq.length() * pow(.5,n)); //wred algorithm for weighting

the queue length to damp out transient effects

 //do I drop this msg?

 if ((lpq.length() >= max_q_len) ||

drop(lpq_min_thresh, lpq_max_thresh, lpq_mpd,

lpq_avg_q_len))

 {

127

 delete (ipDatagram); //dropped

 ev<<"Drop from LPQ\n";

 }

 else

 {

 lpq.insert(ipDatagram); //insert into queue

 }

 }

 //schedule next service of queues

 if (!next_send->isScheduled())

 if (parentModule()->gate("qOut")->isBusy())

 scheduleAt(parentModule()->gate("qOut")-

>transmissionFinishes(), next_send);

 else

 scheduleAt(simTime(), next_send);

 }

}

void wredApp::serviceQueues()

{

 double bw_var = bw(); //determine bw used by hpq

 //service hpq if not over bw allocation

 if (bw_var<bwMax && !hpq.empty())

128

 {

 //insert in bw calc queue

 cMessage *bw_msg = (cMessage *)((cMessage

*)hpq.tail())->dup();

 bw_msg->setTimestamp(simTime()); //set timestamp

needed for bw calcs

 hpq_bits = hpq_bits+bw_msg->length(); //add to

length of msgs in bw queue

 hpq_bw_q.insert(bw_msg); //store for future calcs

 send((cMessage *) hpq.pop(), "qOut"); //send msg

 hpqsize_v.record(hpq.length());//record queue size

 //schedule next send

 if (!next_send->isScheduled() && (!hpq.empty() ||

!lpq.empty()))

 if (parentModule()->gate("qOut")->isBusy())

 scheduleAt(parentModule()->gate("qOut")-

>transmissionFinishes(), next_send);

 else

 scheduleAt(simTime(), next_send);

 }

 //service lpq

 else if (!lpq.empty())

 {

129

 //insert in bw calc queue

 cMessage *bw_msg = (cMessage *)((cMessage

*)lpq.tail())->dup();

 bw_msg->setTimestamp(simTime()); //set timestamp

needed for bw calcs

 lpq_bits = lpq_bits+bw_msg->length(); //add to

length of msgs in bw queue

 lpq_bw_q.insert(bw_msg); //store for future calcs

 send((cMessage *) lpq.pop(), "qOut"); //send msg

 lpqsize_v.record(lpq.length());//record queue size

 //schedule next send

 if (!next_send->isScheduled() && (!hpq.empty() ||

!lpq.empty()))

 if (parentModule()->gate("qOut")->isBusy())

 scheduleAt(parentModule()->gate("qOut")-

>transmissionFinishes(), next_send);

 else

 scheduleAt(simTime(), next_send);

 }

 else if (!hpq.empty()) //service anyway so that bw not

wasted

 {

 //insert in bw calc queue

130

 cMessage *bw_msg = (cMessage *)((cMessage

*)hpq.tail())->dup();

 bw_msg->setTimestamp(simTime());//set timestamp

needed for bw calcs

 hpq_bits = hpq_bits+bw_msg->length(); //add to

length of msgs in bw queue

 hpq_bw_q.insert(bw_msg); //store for future calcs

 send((cMessage *) hpq.pop(), "qOut"); //send msg

 hpqsize_v.record(hpq.length()); //record queue size

 //schedule next send

 if (!next_send->isScheduled() && (!hpq.empty() ||

!lpq.empty()))

 if (parentModule()->gate("qOut")->isBusy())

 scheduleAt(parentModule()->gate("qOut")-

>transmissionFinishes(), next_send);

 else

 scheduleAt(simTime(), next_send);

 }

}

double wredApp::bw()

{

 double bw_var;

131

 old_time = simTime()-win;//oldest time to include

 bool done = false;

 //remove messages older than the window

 while (!lpq_bw_q.empty() && !done)

 {

 if (((cMessage *)lpq_bw_q.tail())->timestamp()>=

old_time)

 done = true; //done purging messages

 else

 {

 lpq_bits = lpq_bits - ((cMessage

*)lpq_bw_q.tail())->length(); //reduce bits counted

 delete lpq_bw_q.pop(); //delete message

 }

 }

 //calc and record bw

 if (lpq_bits > 0)

 bw_var = lpq_bits/(simTime()-(((cMessage

*)lpq_bw_q.tail())->timestamp()));

 else

 bw_var = 0;

 lpbw_v.record(bw_var);

132

 done = false;

 //remove messages older than the window

 while (!hpq_bw_q.empty() && !done)

 {

 if (((cMessage *)hpq_bw_q.tail())->timestamp()>=

old_time)

 done = true; //done purging messages

 else

 {

 hpq_bits = hpq_bits - ((cMessage

*)hpq_bw_q.tail())->length(); //reduce bits in queue

 delete hpq_bw_q.pop(); //delete msg

 }

 }

 //calc and record bw

 if (hpq_bits > 0)

 bw_var = hpq_bits/(simTime()-(((cMessage

*)hpq_bw_q.tail())->timestamp()));

 else

 bw_var = 0;

 hpbw_v.record(bw_var);

 return bw_var;//hpq bw usage

133

}

//determine random drop based on WRED

bool wredApp::drop(int min_thresh, int max_thresh, int mpd,

double avg_q_len)

{

 bool drop_val;

 if (avg_q_len > min_thresh)//only drop if over

min_thresh for queue length

 {

 double drop_prob;

 drop_prob = ((avg_q_len - min_thresh) / (max_thresh

- min_thresh)) / mpd; //probability that an individual

message will be dropped

 if (drop_prob >= dblrand()) //randomly determine if

we drop

 drop_val = true;

 else

 drop_val = false;

 }

 else

 drop_val = false;

134

 return (drop_val);

}

filename: node1_1.irt

routing table for node 1

author: James Knoll

ifconfig:

ethernet card 0 to client 2

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.1

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_2.irt

135

routing table for node 2

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.2

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_3.irt

routing table for node 3

author: James Knoll

ifconfig:

136

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.3

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_4.irt

routing table for node 4

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.4

MTU: 1500 Metric: 1

137

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_5.irt

routing table for node 5

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.5

MTU: 1500 Metric: 1

ifconfigend.

route:

138

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_6.irt

routing table for node 6

author: James Knoll

ifconfig:

ethernet card 0 to client 2

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.6

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

139

filename: node1_7.irt

routing table for node 7

author: James Knoll

ifconfig:

ethernet card 0 to client 2

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.7

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_8.irt

routing table for node 8

140

author: James Knoll

ifconfig:

ethernet card 0 to client 2

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.8

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_9.irt

routing table for node 9

author: James Knoll

ifconfig:

141

ethernet card 0 to client 2

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.9

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_10.irt

routing table for node 10

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.10

MTU: 1500 Metric: 1

142

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_11.irt

routing table for node 11

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.11

MTU: 1500 Metric: 1

ifconfigend.

143

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_12.irt

routing table for node 12

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.12

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

144

routeend.

filename: node1_13.irt

routing table for node 13

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.13

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_14.irt

145

routing table for node 14

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.14

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_15.irt

routing table for node 15

author: James Knoll

146

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.15

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_16.irt

routing table for node 16

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.16

147

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_17.irt

routing table for node 17

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.17

MTU: 1500 Metric: 1

ifconfigend.

148

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_18.irt

routing table for node 18

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.18

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

149

routeend.

filename: node1_19.irt

routing table for node 19

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.19

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

150

filename: node1_20.irt

routing table for node 20

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.20

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_21.irt

routing table for node 21

author: James Knoll

151

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.21

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_22.irt

routing table for node 22

author: James Knoll

ifconfig:

152

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.22

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_23.irt

routing table for node 23

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.23

MTU: 1500 Metric: 1

153

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_24.irt

routing table for node 24

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.24

MTU: 1500 Metric: 1

ifconfigend.

154

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

routeend.

filename: node1_25.irt

routing table for node 25

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.0.25

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.1.0 255.255.255.0 G 0

 ppp0

155

routeend.

filename: node2_1.irt

routing table for node 1

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.1

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_2.irt

routing table for node 2

156

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.2

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_3.irt

routing table for node 3

author: James Knoll

ifconfig:

157

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.3

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_4.irt

routing table for node 4

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.4

MTU: 1500 Metric: 1

158

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_5.irt

routing table for node 5

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.5

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

159

routeend.

filename: node2_6.irt

routing table for node 6

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.6

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_7.irt

routing table for node 7

160

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.7

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_8.irt

routing table for node 8

author: James Knoll

ifconfig:

161

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.8

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_9.irt

routing table for node 9

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.9

MTU: 1500 Metric: 1

162

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_10.irt

routing table for node 10

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.10

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

163

routeend.

filename: node2_11.irt

routing table for node 11

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.11

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_12.irt

routing table for node 12

164

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.12

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_13.irt

routing table for node 13

author: James Knoll

ifconfig:

165

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.13

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_14.irt

routing table for node 14

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.14

MTU: 1500 Metric: 1

166

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_15.irt

routing table for node 15

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.15

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

167

routeend.

filename: node2_16.irt

routing table for node 16

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.16

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_17.irt

routing table for node 17

168

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.17

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_18.irt

routing table for node 18

author: James Knoll

ifconfig:

169

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.18

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_19.irt

routing table for node 19

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.19

MTU: 1500 Metric: 1

170

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_20.irt

routing table for node 20

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.20

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

171

routeend.

filename: node2_21.irt

routing table for node 21

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.21

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_22.irt

172

routing table for node 22

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.22

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_23.irt

routing table for node 23

author: James Knoll

173

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.23

MTU: 1500 Metric: 1

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_24.irt

routing table for node 24

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.24

MTU: 1500 Metric: 1

174

ifconfigend.

route:

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: node2_25.irt

routing table for node 25

author: James Knoll

ifconfig:

ethernet card 0

name: ppp0 encap: Point-to-Point inet_addr: 10.0.3.25

MTU: 1500 Metric: 1

ifconfigend.

route:

175

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: router1.irt

routing table 1 for voip networks

author: James Knoll

ifconfig:

PPP link 0 to router1

name: ppp0 encap: Point-to-Point inet_addr: 10.0.1.1

MTU: 1500 Metric: 1

PPP link 1 to node 1

name: ppp1 encap: Point-to-Point inet_addr: 10.0.1.2

MTU: 1500 Metric: 1

PPP link 2 to node 2

name: ppp2 encap: Point-to-Point inet_addr: 10.0.1.3

MTU: 1500 Metric: 1

PPP link 3 to node 3

176

name: ppp3 encap: Point-to-Point inet_addr: 10.0.1.4

MTU: 1500 Metric: 1

PPP link 4 to node 4

name: ppp4 encap: Point-to-Point inet_addr: 10.0.1.5

MTU: 1500 Metric: 1

PPP link 5 to node 5

name: ppp5 encap: Point-to-Point inet_addr: 10.0.1.6

MTU: 1500 Metric: 1

PPP link 6 to node 6

name: ppp6 encap: Point-to-Point inet_addr: 10.0.1.7

MTU: 1500 Metric: 1

PPP link 7 to node 7

name: ppp7 encap: Point-to-Point inet_addr: 10.0.1.8

MTU: 1500 Metric: 1

PPP link 8 to node 8

name: ppp8 encap: Point-to-Point inet_addr: 10.0.1.9

MTU: 1500 Metric: 1

PPP link 9 to node 9

name: ppp9 encap: Point-to-Point inet_addr: 10.0.1.10

177

MTU: 1500 Metric: 1

PPP link 10 to node 10

name: ppp10 encap: Point-to-Point inet_addr: 10.0.1.11

MTU: 1500 Metric: 1

PPP link 11 to node 11

name: ppp11 encap: Point-to-Point inet_addr: 10.0.1.12

MTU: 1500 Metric: 1

PPP link 12 to node 12

name: ppp12 encap: Point-to-Point inet_addr: 10.0.1.13

MTU: 1500 Metric: 1

PPP link 13 to node 13

name: ppp13 encap: Point-to-Point inet_addr: 10.0.1.14

MTU: 1500 Metric: 1

PPP link 14 to node 14

name: ppp14 encap: Point-to-Point inet_addr: 10.0.1.15

MTU: 1500 Metric: 1

PPP link 15 to node 15

name: ppp15 encap: Point-to-Point inet_addr: 10.0.1.16

MTU: 1500 Metric: 1

178

PPP link 16 to node 16

name: ppp16 encap: Point-to-Point inet_addr: 10.0.1.17

MTU: 1500 Metric: 1

PPP link 17 to node 17

name: ppp17 encap: Point-to-Point inet_addr: 10.0.1.18

MTU: 1500 Metric: 1

PPP link 18 to node 18

name: ppp18 encap: Point-to-Point inet_addr: 10.0.1.19

MTU: 1500 Metric: 1

PPP link 19 to node 19

name: ppp19 encap: Point-to-Point inet_addr: 10.0.1.20

MTU: 1500 Metric: 1

PPP link 20 to node 20

name: ppp20 encap: Point-to-Point inet_addr: 10.0.1.21

MTU: 1500 Metric: 1

PPP link 21 to node 21

name: ppp21 encap: Point-to-Point inet_addr: 10.0.1.22

MTU: 1500 Metric: 1

179

PPP link 22 to node 22

name: ppp22 encap: Point-to-Point inet_addr: 10.0.1.23

MTU: 1500 Metric: 1

PPP link 23 to node 23

name: ppp23 encap: Point-to-Point inet_addr: 10.0.1.24

MTU: 1500 Metric: 1

PPP link 24 to node 24

name: ppp24 encap: Point-to-Point inet_addr: 10.0.1.25

MTU: 1500 Metric: 1

PPP link 25 to node 25

name: ppp25 encap: Point-to-Point inet_addr: 10.0.1.26

MTU: 1500 Metric: 1

PPP link 26 to node 26

name: ppp26 encap: Point-to-Point inet_addr: 10.0.1.27

MTU: 1500 Metric: 1

PPP link 27 to node 27

name: ppp27 encap: Point-to-Point inet_addr: 10.0.1.28

MTU: 1500 Metric: 1

PPP link 28 to node 28

180

name: ppp28 encap: Point-to-Point inet_addr: 10.0.1.29

MTU: 1500 Metric: 1

PPP link 29 to node 29

name: ppp29 encap: Point-to-Point inet_addr: 10.0.1.30

MTU: 1500 Metric: 1

ifconfigend.

route:

10.0.0.1 * 255.255.255.255 H 0 ppp1

10.0.0.2 * 255.255.255.255 H 0 ppp2

10.0.0.3 * 255.255.255.255 H 0 ppp3

10.0.0.4 * 255.255.255.255 H 0 ppp4

10.0.0.5 * 255.255.255.255 H 0 ppp5

10.0.0.6 * 255.255.255.255 H 0 ppp6

10.0.0.7 * 255.255.255.255 H 0 ppp7

10.0.0.8 * 255.255.255.255 H 0 ppp8

10.0.0.9 * 255.255.255.255 H 0 ppp9

10.0.0.10 * 255.255.255.255 H 0 ppp10

10.0.0.11 * 255.255.255.255 H 0 ppp11

10.0.0.12 * 255.255.255.255 H 0 ppp12

10.0.0.13 * 255.255.255.255 H 0 ppp13

10.0.0.14 * 255.255.255.255 H 0 ppp14

181

10.0.0.15 * 255.255.255.255 H 0 ppp15

10.0.0.16 * 255.255.255.255 H 0 ppp16

10.0.0.17 * 255.255.255.255 H 0 ppp17

10.0.0.18 * 255.255.255.255 H 0 ppp18

10.0.0.19 * 255.255.255.255 H 0 ppp19

10.0.0.20 * 255.255.255.255 H 0 ppp20

10.0.0.21 * 255.255.255.255 H 0 ppp21

10.0.0.22 * 255.255.255.255 H 0 ppp22

10.0.0.23 * 255.255.255.255 H 0 ppp23

10.0.0.24 * 255.255.255.255 H 0 ppp24

10.0.0.25 * 255.255.255.255 H 0 ppp25

10.0.0.26 * 255.255.255.255 H 0 ppp26

10.0.0.27 * 255.255.255.255 H 0 ppp27

10.0.0.28 * 255.255.255.255 H 0 ppp28

10.0.0.29 * 255.255.255.255 H 0 ppp29

default: 10.0.2.0 255.0.0.0 G 0 ppp0

routeend.

filename: router2.irt

routing table 2 for voip networks

author: James Knoll

182

ifconfig:

PPP link 0 to router1

name: ppp0 encap: Point-to-Point inet_addr: 10.0.2.1

MTU: 1500 Metric: 1

PPP link 1 to node 1

name: ppp1 encap: Point-to-Point inet_addr: 10.0.2.2

MTU: 1500 Metric: 1

PPP link 2 to node 2

name: ppp2 encap: Point-to-Point inet_addr: 10.0.2.3

MTU: 1500 Metric: 1

PPP link 3 to node 3

name: ppp3 encap: Point-to-Point inet_addr: 10.0.2.4

MTU: 1500 Metric: 1

PPP link 4 to node 4

name: ppp4 encap: Point-to-Point inet_addr: 10.0.2.5

MTU: 1500 Metric: 1

PPP link 5 to node 5

name: ppp5 encap: Point-to-Point inet_addr: 10.0.2.6

MTU: 1500 Metric: 1

183

PPP link 6 to node 6

name: ppp6 encap: Point-to-Point inet_addr: 10.0.2.7

MTU: 1500 Metric: 1

PPP link 7 to node 7

name: ppp7 encap: Point-to-Point inet_addr: 10.0.2.8

MTU: 1500 Metric: 1

PPP link 8 to node 8

name: ppp8 encap: Point-to-Point inet_addr: 10.0.2.9

MTU: 1500 Metric: 1

PPP link 9 to node 9

name: ppp9 encap: Point-to-Point inet_addr: 10.0.2.10

MTU: 1500 Metric: 1

PPP link 10 to node 10

name: ppp10 encap: Point-to-Point inet_addr: 10.0.2.11

MTU: 1500 Metric: 1

PPP link 11 to node 11

name: ppp11 encap: Point-to-Point inet_addr: 10.0.2.12

MTU: 1500 Metric: 1

184

PPP link 12 to node 12

name: ppp12 encap: Point-to-Point inet_addr: 10.0.2.13

MTU: 1500 Metric: 1

PPP link 13 to node 13

name: ppp13 encap: Point-to-Point inet_addr: 10.0.2.14

MTU: 1500 Metric: 1

PPP link 14 to node 14

name: ppp14 encap: Point-to-Point inet_addr: 10.0.2.15

MTU: 1500 Metric: 1

PPP link 15 to node 15

name: ppp15 encap: Point-to-Point inet_addr: 10.0.2.16

MTU: 1500 Metric: 1

PPP link 16 to node 16

name: ppp16 encap: Point-to-Point inet_addr: 10.0.2.17

MTU: 1500 Metric: 1

PPP link 17 to node 17

name: ppp17 encap: Point-to-Point inet_addr: 10.0.2.18

MTU: 1500 Metric: 1

PPP link 18 to node 18

185

name: ppp18 encap: Point-to-Point inet_addr: 10.0.2.19

MTU: 1500 Metric: 1

PPP link 19 to node 19

name: ppp19 encap: Point-to-Point inet_addr: 10.0.2.20

MTU: 1500 Metric: 1

PPP link 20 to node 20

name: ppp20 encap: Point-to-Point inet_addr: 10.0.2.21

MTU: 1500 Metric: 1

PPP link 21 to node 21

name: ppp21 encap: Point-to-Point inet_addr: 10.0.2.22

MTU: 1500 Metric: 1

PPP link 22 to node 22

name: ppp22 encap: Point-to-Point inet_addr: 10.0.2.23

MTU: 1500 Metric: 1

PPP link 23 to node 23

name: ppp23 encap: Point-to-Point inet_addr: 10.0.2.24

MTU: 1500 Metric: 1

PPP link 24 to node 24

name: ppp24 encap: Point-to-Point inet_addr: 10.0.2.25

186

MTU: 1500 Metric: 1

PPP link 25 to node 25

name: ppp25 encap: Point-to-Point inet_addr: 10.0.2.26

MTU: 1500 Metric: 1

PPP link 26 to node 26

name: ppp26 encap: Point-to-Point inet_addr: 10.0.2.27

MTU: 1500 Metric: 1

PPP link 27 to node 27

name: ppp27 encap: Point-to-Point inet_addr: 10.0.2.28

MTU: 1500 Metric: 1

PPP link 28 to node 28

name: ppp28 encap: Point-to-Point inet_addr: 10.0.2.29

MTU: 1500 Metric: 1

PPP link 29 to node 29

name: ppp29 encap: Point-to-Point inet_addr: 10.0.2.30

MTU: 1500 Metric: 1

ifconfigend.

187

route:

10.0.3.1 * 255.255.255.255 H 0 ppp1

10.0.3.2 * 255.255.255.255 H 0 ppp2

10.0.3.3 * 255.255.255.255 H 0 ppp3

10.0.3.4 * 255.255.255.255 H 0 ppp4

10.0.3.5 * 255.255.255.255 H 0 ppp5

10.0.3.6 * 255.255.255.255 H 0 ppp6

10.0.3.7 * 255.255.255.255 H 0 ppp7

10.0.3.8 * 255.255.255.255 H 0 ppp8

10.0.3.9 * 255.255.255.255 H 0 ppp9

10.0.3.10 * 255.255.255.255 H 0 ppp10

10.0.3.11 * 255.255.255.255 H 0 ppp11

10.0.3.12 * 255.255.255.255 H 0 ppp12

10.0.3.13 * 255.255.255.255 H 0 ppp13

10.0.3.14 * 255.255.255.255 H 0 ppp14

10.0.3.15 * 255.255.255.255 H 0 ppp15

10.0.3.16 * 255.255.255.255 H 0 ppp16

10.0.3.17 * 255.255.255.255 H 0 ppp17

10.0.3.18 * 255.255.255.255 H 0 ppp18

10.0.3.19 * 255.255.255.255 H 0 ppp19

10.0.3.20 * 255.255.255.255 H 0 ppp20

10.0.3.21 * 255.255.255.255 H 0 ppp21

10.0.3.22 * 255.255.255.255 H 0 ppp22

10.0.3.23 * 255.255.255.255 H 0 ppp23

10.0.3.24 * 255.255.255.255 H 0 ppp24

188

10.0.3.25 * 255.255.255.255 H 0 ppp25

10.0.3.26 * 255.255.255.255 H 0 ppp26

10.0.3.27 * 255.255.255.255 H 0 ppp27

10.0.3.28 * 255.255.255.255 H 0 ppp28

10.0.3.29 * 255.255.255.255 H 0 ppp29

default: 10.0.1.0 255.0.0.0 G 0 ppp0

routeend.

C. NETWORKS

//---

// file: codec.ned

// author: James Knoll

//

// Date: 31 May, 2004

//

// Simple voip configuration to test how codecs respond to

// varying the frame size. The network consists of two

// voip nodes connected with a router and wred box on each

// network. Each set of runs is conducted by varying the

// frame size with a fixed CODEC data rate.

//---

import

 "voipUDPHost",

189

 "wredBox",

 "INE";

module codec

 parameters:

 satrate : numeric;

 submodules:

 voipclient11: voipUDPHost;

 parameters:

 local_addr = "10.0.0.1",

 dest_addr = "10.0.3.1",

 local_port = 100,

 dest_port = 200,

 // Voice parameters

 voice_length = input(30s, "Length of voice

transmission: "),

 initiate = input(false, "Initiate

conversation? "),

 codec_rate = input(64000, "CODEC stream

rate: "),

 reply_delay = input(4s, "Time to delay

before replying to a voice burst: "),

 frame_size = input(20ms, "Length of a

frame: "),

 // network parameters

 numOfPorts = 1, //nodes connected to

190

 routingFile = "node1_1.irt";

 gatesizes:

 in[1],

 out[1];

 display: "p=45,100;i=pc";

 router1: Router;

 parameters:

 // network parameters

 numOfPorts = 2, //nodes connected to

 routingFile = "router1.irt";

 gatesizes:

 in[2],

 out[2];

 display: "p=160,100;i=ipc";

 wred1: wredBox;

 parameters:

 win = 1s, //time span for bw calcs

 bw_max = input(42000, "Max amount of bw to

allocate to high pri traffic: ");

 display: "p=210,100;i=bwxcon_s";

 voipclient21: voipUDPHost;

 parameters:

 // UDP parameters

 local_addr = "10.0.3.1",

 dest_addr = "10.0.0.1",

191

 local_port = 200,

 dest_port = 100,

 // Voice parameters

 voice_length = input(30s, "Length of voice

transmission: "),

 initiate = input(true, "Initiate

conversation? "),

 codec_rate = input(64000, "CODEC stream

rate: "),

 reply_delay = input(4s, "Time to delay

before replying to a voice burst: "),

 frame_size = input(20ms, "Length of a

frame: "),

 // network parameters

 numOfPorts = 1, //nodes connected to

 routingFile = "node2_1.irt";

 gatesizes:

 in[1],

 out[1];

 display: "p=455,100;i=comp";

 router2: Router;

 parameters:

 // network parameters

 numOfPorts = 2, //nodes connected to

 routingFile = "router2.irt";

 gatesizes:

192

 in[2],

 out[2];

 display: "p=340,100;i=ipc";

 wred2: wredBox;

 parameters:

 win = 1s,

 bw_max = input(42000, "Max amount of bw to

allocate to high pri traffic: ");

 display: "p=290,100;i=bwxcon_s";

 connections nocheck:

 voipclient11.out[0] --> router1.in[1];

 voipclient21.out[0] --> router2.in[1];

 router1.out[0] --> wred1.qIn;

 wred1.qOut --> datarate satrate --> wred2.passIn;

 wred2.passOut --> router2.in[0];

 router2.out[0] --> wred2.qIn;

 wred2.qOut --> datarate satrate --> wred1.passIn;

 wred1.passOut --> router1.in[0];

 router2.out[1] --> voipclient21.in[0];

193

 router1.out[1] --> voipclient11.in[0];

 display: "p=10,18;b=345,156";

endmodule

network directnw : codec

endnetwork

filename: omnetpp.ini

ini file for codec.ned

author: James Knoll

[General]

preload-ned-files = *.ned ../mynodes/*.ned

@c:/home/IPSuite/nedfiles.lst ;ned files to load

dynamically

network = directnw

total-stack-kb=7535

sim-time-limit = 10m ;maximum simulation time to run

simulation

cpu-time-limit= 1h ;maximum clock time to run simulation

random-seed = 1 ;seed for random numbers

snapshot-file = codec.sna ;file to output snapshots to

194

;output-vector-file = codec.vec ;file to output vectors

[Cmdenv]

runs-to-execute=1-18 ;runs to execute using cmd environment

express-mode = yes ;run in express mode

status-frequency=100000 ;frequency for status messages

[Tkenv]

default-run=1 ;run to execute for TK environment

[OutVectors]

;*.interval = 10s..;delay before starting to record data

#voip and traffic vectors

*.delay_time.enabled = no

*.receive_rate.enabled = no

*.inst_rec_rate.enabled = no

*.send_rate.enabled = no

*.inst_send_rate.enabled = no

*.jitter.enabled = no ;jitter in voip apps

#tcp client vectors

*.Send No.enabled = no

*.TCP delay.enabled = no

*.Rec No.enabled = no

*.Rec Seq No.enabled = no

*.Cwnd size.enabled = no

195

*.Goodput.enabled = no

*.Avg_Goodput.enabled = no

*.Rec_Bits.enabled = no

#wred vectors

*.LP_BW.enabled = no

*.HP_BW.enabled = yes

*.HPQ_size.enabled = no

*.LPQ_size.enabled = no

[Parameters]

#connections

*.sat_datarate = 64000 ;data rate of satellite connection

*.sat_error = 0 ;satellite BER

*.sat_delay = 500ms ;delay in satellite link

#traffic

*.msg_length = 11200 ;length of a message in bits

*.traffic_rate = 64000 ;rate of transmission

voip app configuration

*.voip_clients = 3 ;number of voip clients

*.voice_length = 30s ;length of a voice burst

*.voipclient11.initiate = true ;does this client initiate

the conversation

*.voipclient21.initiate = false

196

*.codec_rate = 5300 ;data rate for voip client

*.reply_delay = 4s ;delay before sending a reply

;*.frame_size = 140ms ;size of a frame

*.init_delay = 2s ;delay before first burst

*.talk_cycle = 50 ;percent off hook

*.call_length = 30m ;length of a call

#wredbox

*.bw_max = 48000 ;48 for 64k and 75 for 128k

*.hpq_min_thresh = 40 ;when to start random drop

*.hpq_max_thresh = 64 ;max drop

*.hpq_mpd = 10 ;percent to drop

*.lpq_min_thresh = 20 ;when to start random drop

*.lpq_max_thresh = 34 ;max drop

*.lpq_mpd = 10 ;percent to drop

*.max_q_len = 64 ;max queue depth

*.n = .01 ;weighting factor

TCP

;*.clients_net1 = 2 ;number of tcp clients in network 1

*.clients_net2 = 0 ;number of tcp clients in network 2

*.mss=1400 ;maximum segment size

*.tcp.debug=true ;debug on

*.message_length = 64000000 ;length of message to transmit

197

processing delays for all nodes

*.preRouting.procdelay = 0

*.routing.procdelay = 0.2 us

*.localDeliver.procdelay = 1 us

*.send.procdelay = 0.5 us

*.fragmentation.procdelay = 0.1 us

*.icmp.procdelay = 0

*.tunneling.procdelay = 0

*.multicast.procdelay = 0

.output[].procdelay = 0.2 us

*.inputQueue.procdelay = 0.1 us

*.networkInterface.procdelay = 0

hook names

*.qosBehaviorClass = "EnqueueWithoutQoS" ;only hook

currently implemented

#configuration changes between runs

[Run 1]

output-vector-file = codec1.vec

*.frame_size = 10ms

[Run 2]

output-vector-file = codec2.vec

*.frame_size = 20ms

198

[Run 3]

output-vector-file = codec3.vec

*.frame_size = 30ms

[Run 4]

output-vector-file = codec4.vec

*.frame_size = 40ms

[Run 5]

output-vector-file = codec5.vec

*.frame_size = 50ms

[Run 6]

output-vector-file = codec6.vec

*.frame_size = 60ms

[Run 7]

output-vector-file = codec7.vec

*.frame_size = 80ms

[Run 8]

output-vector-file = codec8.vec

*.frame_size = 100ms

199

[Run 9]

output-vector-file = codec9.vec

*.frame_size = 120ms

[Run 10]

output-vector-file = codec10.vec

*.frame_size = 150ms

[Run 11]

output-vector-file = codec11.vec

*.frame_size = 200ms

[Run 12]

output-vector-file = codec12.vec

*.frame_size = 250ms

[Run 13]

output-vector-file = codec13.vec

*.frame_size = 300ms

[Run 14]

output-vector-file = codec14.vec

*.frame_size = 330ms

[Run 15]

200

output-vector-file = codec15.vec

*.frame_size = 350ms

[Run 16]

output-vector-file = codec16.vec

*.frame_size = 400ms

[Run 17]

output-vector-file = codec17.vec

*.frame_size = 450ms

[Run 18]

output-vector-file = codec18.vec

*.frame_size = 500ms

//---

// file: codec_w_ine.ned

// author: James Knoll

//

// Date: 31 May, 2004

//

// Simple voip configuration with INEs to test how CODECs

// respond to varying the frame size. It is used with

// codec.ned to show the effect of the INE on the effective

// data rate. The network consists of two voip nodes

201

// connected with a router and wred box on each network.

// Each set of runs is conducted by varying the frame size

// with a fixed CODEC data rate.

//---

import

 "voipUDPHost",

 "wredBox",

 "INE";

module codec_w_ine

 parameters:

 satrate : numeric;

 submodules:

 voipclient11: voipUDPHost;

 parameters:

 local_addr = "10.0.0.1",

 dest_addr = "10.0.3.1",

 local_port = 100,

 dest_port = 200,

 // Voice parameters

 voice_length = input(30s, "Length of voice

transmission: "),

 initiate = input(false, "Initiate

conversation? "),

202

 codec_rate = input(64000, "CODEC stream

rate: "),

 reply_delay = input(4s, "Time to delay

before replying to a voice burst: "),

 frame_size = input(20ms, "Length of a

frame: "),

 // network parameters

 numOfPorts = 1, //nodes connected to

 routingFile = "node1_1.irt";

 gatesizes:

 in[1],

 out[1];

 display: "p=45,100;i=pc";

 ine11: INE;

 display: "p=100,100;i=ipc";

 router1: Router;

 parameters:

 // network parameters

 numOfPorts = 2, //nodes connected to

 routingFile = "router1.irt";

 gatesizes:

 in[2],

 out[2];

 display: "p=160,100;i=ipc";

 wred1: wredBox;

203

 parameters:

 win = 1s, //window size for bw calcs

 bw_max = input(42000, "Max amount of bw to

allocate to high pri traffic: ");

 display: "p=210,100;i=bwxcon_s";

 voipclient21: voipUDPHost;

 parameters:

 // UDP parameters

 local_addr = "10.0.3.1",

 dest_addr = "10.0.0.1",

 local_port = 200,

 dest_port = 100,

 // Voice parameters

 voice_length = input(30s, "Length of voice

transmission: "),

 initiate = input(true, "Initiate

conversation? "),

 codec_rate = input(64000, "CODEC stream

rate: "),

 reply_delay = input(4s, "Time to delay

before replying to a voice burst: "),

 frame_size = input(20ms, "Length of a

frame: "),

 // network parameters

 numOfPorts = 1, //nodes connected to

 routingFile = "node2_1.irt";

204

 gatesizes:

 in[1],

 out[1];

 display: "p=455,100;i=comp";

 ine21: INE;

 display: "p=400,100;i=ipc";

 router2: Router;

 parameters:

 // network parameters

 numOfPorts = 2, //nodes connected to

 routingFile = "router2.irt";

 gatesizes:

 in[2],

 out[2];

 display: "p=340,100;i=ipc";

 wred2: wredBox;

 parameters:

 win = 1s, //window to use for bw calcs

 bw_max = input(42000, "Max amount of bw to

allocate to high pri traffic: ");

 display: "p=290,100;i=bwxcon_s";

 connections nocheck:

 voipclient11.out[0] --> ine11.plainIn;

 ine11.cypherOut --> router1.in[1];

205

 voipclient21.out[0] --> ine21.plainIn;

 ine21.cypherOut --> router2.in[1];

 router1.out[0] --> wred1.qIn;

 wred1.qOut --> datarate satrate --> wred2.passIn;

 wred2.passOut --> router2.in[0];

 router2.out[0] --> wred2.qIn;

 wred2.qOut --> datarate satrate --> wred1.passIn;

 wred1.passOut --> router1.in[0];

 router2.out[1] --> ine21.cypherIn;

 ine21.plainOut --> voipclient21.in[0];

 router1.out[1] --> ine11.cypherIn;

 ine11.plainOut --> voipclient11.in[0];

 display: "p=10,18;b=345,156";

endmodule

network directnw : codec_w_ine

endnetwork

206

filename: omnetpp.ini

ini file for codec_w_ine.ned

author: James Knoll

[General]

preload-ned-files = *.ned ../mynodes/*.ned

@c:/home/IPSuite/nedfiles.lst ;ned files to load

dynamically

network = directnw

total-stack-kb=7535

sim-time-limit = 10m ;maximum simulation time to run

simulation

cpu-time-limit= 1h ;maximum clock time to run simulation

random-seed = 1 ;seed for random numbers

snapshot-file = codec.sna ;file to output snapshots to

;output-vector-file = codec.vec ;file to output vectors

[Cmdenv]

runs-to-execute=1-50 ;runs to execute using cmd environment

express-mode = yes ;run in express mode

status-frequency=100000 ;frequency for status messages

[Tkenv]

default-run=1 ;run to execute for TK environment

207

[OutVectors]

;*.interval = 10s ;delay before starting to record data

#voip and traffic vectors

*.delay_time.enabled = no

*.receive_rate.enabled = no

*.inst_rec_rate.enabled = no

*.send_rate.enabled = no

*.inst_send_rate.enabled = no

*.jitter.enabled = no ;jitter in voip apps

#tcp client vectors

*.Send No.enabled = no

*.TCP delay.enabled = no

*.Rec No.enabled = no

*.Rec Seq No.enabled = no

*.Cwnd size.enabled = no

*.Goodput.enabled = no

*.Avg_Goodput.enabled = no

*.Rec_Bits.enabled = no

#wred vectors

*.LP_BW.enabled = no

*.HP_BW.enabled = yes

*.HPQ_size.enabled = no

*.LPQ_size.enabled = no

208

[Parameters]

#connections

*.sat_datarate = 64000 ;data rate of satellite connection

*.sat_error = 0 ;satellite BER

*.sat_delay = 500ms ;delay in satellite link

#traffic

*.msg_length = 11200 ;length of a message in bits

*.traffic_rate = 64000 ;rate of transmission

voip app configuration

*.voip_clients = 3 ;number of voip clients

*.voice_length = 30s ;length of a voice burst

*.voipclient11.initiate = true ;does this client initiate

the conversation

*.voipclient21.initiate = false

*.codec_rate = 5300 ;data rate for voip client

*.reply_delay = 4s ;delay before sending a reply

;*.frame_size = 140ms ;size of a frame

*.init_delay = 2s ;delay before first burst

*.talk_cycle = 50 ;percent off hook

*.call_length = 30m ;length of a call

#wredbox

*.bw_max = 48000 ;48 for 64k and 75 for 128k

209

*.hpq_min_thresh = 40 ;when to start random drop

*.hpq_max_thresh = 64 ;max drop

*.hpq_mpd = 10 ;percent to drop

*.lpq_min_thresh = 20 ;when to start random drop

*.lpq_max_thresh = 34 ;max drop

*.lpq_mpd = 10 ;percent to drop

*.max_q_len = 64 ;max queue depth

*.n = .01 ;weighting factor

TCP

;*.clients_net1 = 2 ;number of tcp clients in network 1

*.clients_net2 = 0 ;number of tcp clients in network 2

*.mss=1400 ;maximum segment size

*.tcp.debug=true ;debug on

*.message_length = 64000000 ;length of message to transmit

processing delays for all nodes

*.preRouting.procdelay = 0

*.routing.procdelay = 0.2 us

*.localDeliver.procdelay = 1 us

*.send.procdelay = 0.5 us

*.fragmentation.procdelay = 0.1 us

*.icmp.procdelay = 0

*.tunneling.procdelay = 0

*.multicast.procdelay = 0

210

.output[].procdelay = 0.2 us

*.inputQueue.procdelay = 0.1 us

*.networkInterface.procdelay = 0

hook names

*.qosBehaviorClass = "EnqueueWithoutQoS" ;only hook

currently implemented within IPSuite

#configuration changes between runs

[Run 1]

output-vector-file = codec1.vec

*.frame_size = 10ms

[Run 2]

output-vector-file = codec2.vec

*.frame_size = 20ms

[Run 3]

output-vector-file = codec3.vec

*.frame_size = 30ms

[Run 4]

output-vector-file = codec4.vec

*.frame_size = 40ms

211

[Run 5]

output-vector-file = codec5.vec

*.frame_size = 50ms

[Run 6]

output-vector-file = codec6.vec

*.frame_size = 60ms

[Run 7]

output-vector-file = codec7.vec

*.frame_size = 70ms

[Run 8]

output-vector-file = codec8.vec

*.frame_size = 80ms

[Run 9]

output-vector-file = codec9.vec

*.frame_size = 90ms

[Run 10]

output-vector-file = codec10.vec

*.frame_size = 100ms

[Run 11]

212

output-vector-file = codec11.vec

*.frame_size = 110ms

[Run 12]

output-vector-file = codec12.vec

*.frame_size = 120ms

[Run 13]

output-vector-file = codec13.vec

*.frame_size = 130ms

[Run 14]

output-vector-file = codec14.vec

*.frame_size = 140ms

[Run 15]

output-vector-file = codec15.vec

*.frame_size = 150ms

[Run 16]

output-vector-file = codec16.vec

*.frame_size = 160ms

[Run 17]

output-vector-file = codec17.vec

213

*.frame_size = 170ms

[Run 18]

output-vector-file = codec18.vec

*.frame_size = 180ms

[Run 19]

output-vector-file = codec19.vec

*.frame_size = 190ms

[Run 20]

output-vector-file = codec20.vec

*.frame_size = 200ms

[Run 21]

output-vector-file = codec21.vec

*.frame_size = 210ms

[Run 22]

output-vector-file = codec22.vec

*.frame_size = 220ms

[Run 23]

output-vector-file = codec23.vec

*.frame_size = 230ms

214

[Run 24]

output-vector-file = codec24.vec

*.frame_size = 240ms

[Run 25]

output-vector-file = codec25.vec

*.frame_size = 250ms

[Run 26]

output-vector-file = codec26.vec

*.frame_size = 260ms

[Run 27]

output-vector-file = codec27.vec

*.frame_size = 270ms

[Run 28]

output-vector-file = codec28.vec

*.frame_size = 280ms

[Run 29]

output-vector-file = codec29.vec

*.frame_size = 290ms

215

[Run 30]

output-vector-file = codec30.vec

*.frame_size = 300ms

[Run 31]

output-vector-file = codec31.vec

*.frame_size = 310ms

[Run 32]

output-vector-file = codec32.vec

*.frame_size = 320ms

[Run 33]

output-vector-file = codec33.vec

*.frame_size = 330ms

[Run 34]

output-vector-file = codec34.vec

*.frame_size = 340ms

[Run 35]

output-vector-file = codec35.vec

*.frame_size = 350ms

[Run 36]

216

output-vector-file = codec36.vec

*.frame_size = 360ms

[Run 37]

output-vector-file = codec37.vec

*.frame_size = 370ms

[Run 38]

output-vector-file = codec38.vec

*.frame_size = 380ms

[Run 39]

output-vector-file = codec39.vec

*.frame_size = 390ms

[Run 40]

output-vector-file = codec40.vec

*.frame_size = 400ms

[Run 41]

output-vector-file = codec41.vec

*.frame_size = 410ms

[Run 42]

output-vector-file = codec42.vec

217

*.frame_size = 420ms

[Run 43]

output-vector-file = codec43.vec

*.frame_size = 430ms

[Run 44]

output-vector-file = codec44.vec

*.frame_size = 440ms

[Run 45]

output-vector-file = codec45.vec

*.frame_size = 450ms

[Run 46]

output-vector-file = codec46.vec

*.frame_size = 460ms

[Run 47]

output-vector-file = codec47.vec

*.frame_size = 470ms

[Run 48]

output-vector-file = codec48.vec

*.frame_size = 480ms

218

[Run 49]

output-vector-file = codec49.vec

*.frame_size = 490ms

[Run 50]

output-vector-file = codec50.vec

*.frame_size = 500ms

//---

// file: slow.ned

// author: James Knoll

//

// Date: 31 May, 2004

//

// Simple voip configuration to test if tcp data traffic

// can be modeled using the UDP application developed. It

// consists of a variable number of clients with

// corresponding servers and a variable number of voip

// conversations. Various loading conditions are

// accomplished by changing the number of TCP and voip

// clients in each run. The current limit is 4 voip nodes

// and up to 25 total nodes per network but can easily be

// increased if needed.

//---

219

import

 "Router",

 "TCPClientNode",

 "TCPServerNode",

 "voipUDPHost",

 "INE",

 "wredBox";

module slow

 parameters:

 clients_net1 : numeric const, //number of clients

on network 1

 clients_net2 : numeric const, //number of clients

on network 2

 voip_clients: numeric const, //number of voip

pairs

 sat_datarate : numeric const, //data rate of

satellite

 sat_error : numeric const, //BER for satellite

 sat_delay : numeric const; //delay for satellite

 submodules:

 voipclient1: voipUDPHost [voip_clients];

 parameters:

220

 local_port = 100,

 dest_port = 200,

 // Voice parameters

 voice_length = input(30s, "Length of voice

transmission: "),

 initiate = input(false, "Initiate

conversation? "),

 codec_rate = input(64000, "CODEC stream

rate: "),

 reply_delay = input(4s, "Time to delay

before replying to a voice burst: "),

 frame_size = input(20ms, "Length of a

frame: "),

 // network parameters

 numOfPorts = 1; //nodes to connect to

 parameters if index==0:

 local_addr = "10.0.0.1",

 dest_addr = "10.0.3.1",

 routingFile = "node1_1.irt";

 parameters if index==1:

 local_addr = "10.0.0.2",

 dest_addr = "10.0.3.2",

 routingFile = "node1_2.irt";

 parameters if index==2:

 local_addr = "10.0.0.3",

 dest_addr = "10.0.3.3",

221

 routingFile = "node1_3.irt";

 parameters if index==3:

 local_addr = "10.0.0.4",

 dest_addr = "10.0.3.4",

 routingFile = "node1_4.irt";

 gatesizes:

 in[1],

 out[1];

 display: "p=40,160,row;i=pc";

 ine1: INE [voip_clients];

 display: "p=40,200,row;i=ipc";

 voipclient2: voipUDPHost [voip_clients];

 parameters:

 local_port = 200,

 dest_port = 100,

 // Voice parameters

 voice_length = input(30s, "Length of voice

transmission: "),

 initiate = input(false, "Initiate

conversation? "),

 codec_rate = input(64000, "CODEC stream

rate: "),

 reply_delay = input(4s, "Time to delay

before replying to a voice burst: "),

 frame_size = input(20ms, "Length of a

frame: "),

222

 // network parameters

 numOfPorts = 1; //nodes to connect to

 parameters if index==0:

 local_addr = "10.0.3.1",

 dest_addr = "10.0.0.1",

 routingFile = "node2_1.irt";

 parameters if index==1:

 local_addr = "10.0.3.2",

 dest_addr = "10.0.0.2",

 routingFile = "node2_2.irt";

 parameters if index==2:

 local_addr = "10.0.3.3",

 dest_addr = "10.0.0.3",

 routingFile = "node2_3.irt";

 parameters if index==3:

 local_addr = "10.0.3.4",

 dest_addr = "10.0.0.4",

 routingFile = "node2_4.irt";

 gatesizes:

 in[1],

 out[1];

 display: "p=40,340,row;i=pc";

 ine2: INE [voip_clients];

 display: "p=40,300,row;i=ipc";

 tcpclient1: TCPClientNode[clients_net1];

223

 parameters:

 // TCP parameters

 local_addr = (10 << 24) +

1+voip_clients+index,

 server_addr = (10 <<24) +(3 <<8)+

1+voip_clients+index+clients_net2,

 // network parameters

 numOfPorts = 1; //nodes to connect to

 parameters if index+voip_clients==0:

 routingFile = "node1_1.irt";

 parameters if index+voip_clients==1:

 routingFile = "node1_2.irt";

 parameters if index+voip_clients==2:

 routingFile = "node1_3.irt";

 parameters if index+voip_clients==3:

 routingFile = "node1_4.irt";

 parameters if index+voip_clients==4:

 routingFile = "node1_5.irt";

 parameters if index+voip_clients==5:

 routingFile = "node1_6.irt";

 parameters if index+voip_clients==6:

 routingFile = "node1_7.irt";

 parameters if index+voip_clients==7:

 routingFile = "node1_8.irt";

 parameters if index+voip_clients==8:

224

 routingFile = "node1_9.irt";

 parameters if index+voip_clients==9:

 routingFile = "node1_10.irt";

 parameters if index+voip_clients==10:

 routingFile = "node1_11.irt";

 parameters if index+voip_clients==11:

 routingFile = "node1_12.irt";

 parameters if index+voip_clients==12:

 routingFile = "node1_13.irt";

 parameters if index+voip_clients==13:

 routingFile = "node1_14.irt";

 parameters if index+voip_clients==14:

 routingFile = "node1_15.irt";

 parameters if index+voip_clients==15:

 routingFile = "node1_16.irt";

 parameters if index+voip_clients==16:

 routingFile = "node1_17.irt";

 parameters if index+voip_clients==17:

 routingFile = "node1_18.irt";

 parameters if index+voip_clients==18:

 routingFile = "node1_19.irt";

 parameters if index+voip_clients==19:

 routingFile = "node1_20.irt";

 parameters if index+voip_clients==20:

 routingFile = "node1_21.irt";

225

 parameters if index+voip_clients==21:

 routingFile = "node1_22.irt";

 parameters if index+voip_clients==22:

 routingFile = "node1_23.irt";

 parameters if index+voip_clients==23:

 routingFile = "node1_24.irt";

 parameters if index+voip_clients==24:

 routingFile = "node1_25.irt";

 gatesizes:

 in[1],

 out[1];

 display: "p=40,40,row;i=pc";

 tcpclient2: TCPClientNode[clients_net2];

 parameters:

 // TCP parameters

 local_addr = (10 << 24) +(3 <<8)+

1+voip_clients+index,

 server_addr = (10 <<24) +

1+voip_clients+index+clients_net1,

 // network parameters

 numOfPorts = 1;

 parameters if index+voip_clients==0:

 routingFile = "node2_1.irt";

 parameters if index+voip_clients==1:

 routingFile = "node2_2.irt";

226

 parameters if index+voip_clients==2:

 routingFile = "node2_3.irt";

 parameters if index+voip_clients==3:

 routingFile = "node2_4.irt";

 parameters if index+voip_clients==4:

 routingFile = "node2_5.irt";

 parameters if index+voip_clients==5:

 routingFile = "node2_6.irt";

 parameters if index+voip_clients==6:

 routingFile = "node2_7.irt";

 parameters if index+voip_clients==7:

 routingFile = "node2_8.irt";

 parameters if index+voip_clients==8:

 routingFile = "node2_9.irt";

 parameters if index+voip_clients==9:

 routingFile = "node2_10.irt";

 parameters if index+voip_clients==10:

 routingFile = "node2_11.irt";

 parameters if index+voip_clients==11:

 routingFile = "node2_12.irt";

 parameters if index+voip_clients==12:

 routingFile = "node2_13.irt";

 parameters if index+voip_clients==13:

 routingFile = "node2_14.irt";

 parameters if index+voip_clients==14:

227

 routingFile = "node2_15.irt";

 parameters if index+voip_clients==15:

 routingFile = "node2_16.irt";

 parameters if index+voip_clients==16:

 routingFile = "node2_17.irt";

 parameters if index+voip_clients==17:

 routingFile = "node2_18.irt";

 parameters if index+voip_clients==18:

 routingFile = "node2_19.irt";

 parameters if index+voip_clients==19:

 routingFile = "node2_20.irt";

 parameters if index+voip_clients==20:

 routingFile = "node2_21.irt";

 parameters if index+voip_clients==21:

 routingFile = "node2_22.irt";

 parameters if index+voip_clients==22:

 routingFile = "node2_23.irt";

 parameters if index+voip_clients==23:

 routingFile = "node2_24.irt";

 parameters if index+voip_clients==24:

 routingFile = "node2_25.irt";

 gatesizes:

 in[1],

 out[1];

 display: "p=40,460,row;i=pc";

228

 tcpserver1: TCPServerNode[clients_net1];

 parameters:

 parameters:

 // TCP parameters

 local_addr = (10 <<24) +(3 <<8)+

1+voip_clients+index+clients_net2,

 // network parameters

 numOfPorts = 1;

 parameters if (index+clients_net2+voip_clients)

==0:

 routingFile = "node2_1.irt";

 parameters if (index+clients_net2+voip_clients)

==1:

 routingFile = "node2_2.irt";

 parameters if (index+clients_net2+voip_clients)

==2:

 routingFile = "node2_3.irt";

 parameters if (index+clients_net2+voip_clients)

==3:

 routingFile = "node2_4.irt";

 parameters if (index+clients_net2+voip_clients)

==4:

 routingFile = "node2_5.irt";

 parameters if (index+clients_net2+voip_clients)

==5:

 routingFile = "node2_6.irt";

229

 parameters if (index+clients_net2+voip_clients)

==6:

 routingFile = "node2_7.irt";

 parameters if (index+clients_net2+voip_clients)

==7:

 routingFile = "node2_8.irt";

 parameters if (index+clients_net2+voip_clients)

==8:

 routingFile = "node2_9.irt";

 parameters if (index+clients_net2+voip_clients)

==9:

 routingFile = "node2_10.irt";

 parameters if (index+clients_net2+voip_clients)

==10:

 routingFile = "node2_11.irt";

 parameters if (index+clients_net2+voip_clients)

==11:

 routingFile = "node2_12.irt";

 parameters if (index+clients_net2+voip_clients)

==12:

 routingFile = "node2_13.irt";

 parameters if (index+clients_net2+voip_clients)

==13:

 routingFile = "node2_14.irt";

 parameters if (index+clients_net2+voip_clients)

==14:

 routingFile = "node2_15.irt";

230

 parameters if (index+clients_net2+voip_clients)

==15:

 routingFile = "node2_16.irt";

 parameters if (index+clients_net2+voip_clients)

==16:

 routingFile = "node2_17.irt";

 parameters if (index+clients_net2+voip_clients)

==17:

 routingFile = "node2_18.irt";

 parameters if (index+clients_net2+voip_clients)

==18:

 routingFile = "node2_19.irt";

 parameters if (index+clients_net2+voip_clients)

==19:

 routingFile = "node2_20.irt";

 parameters if (index+clients_net2+voip_clients)

==20:

 routingFile = "node2_21.irt";

 parameters if (index+clients_net2+voip_clients)

==21:

 routingFile = "node2_22.irt";

 parameters if (index+clients_net2+voip_clients)

==22:

 routingFile = "node2_23.irt";

 parameters if (index+clients_net2+voip_clients)

==23:

 routingFile = "node2_24.irt";

231

 parameters if (index+clients_net2+voip_clients)

==24:

 routingFile = "node2_25.irt";

 gatesizes:

 in[1],

 out[1];

 display: "p=40,400,row;i=comp";

 tcpserver2: TCPServerNode[clients_net2];

 parameters:

 parameters:

 // TCP parameters

 local_addr = (10 <<24) +

1+voip_clients+index+clients_net1,

 // network parameters

 numOfPorts = 1;

 parameters if (index+clients_net1+voip_clients)

==0:

 routingFile = "node1_1.irt";

 parameters if (index+clients_net1+voip_clients)

==1:

 routingFile = "node1_2.irt";

 parameters if (index+clients_net1+voip_clients)

==2:

 routingFile = "node1_3.irt";

 parameters if (index+clients_net1+voip_clients)

==3:

232

 routingFile = "node1_4.irt";

 parameters if (index+clients_net1+voip_clients)

==4:

 routingFile = "node1_5.irt";

 parameters if (index+clients_net1+voip_clients)

==5:

 routingFile = "node1_6.irt";

 parameters if (index+clients_net1+voip_clients)

==6:

 routingFile = "node1_7.irt";

 parameters if (index+clients_net1+voip_clients)

==7:

 routingFile = "node1_8.irt";

 parameters if (index+clients_net1+voip_clients)

==8:

 routingFile = "node1_9.irt";

 parameters if (index+clients_net1+voip_clients)

==9:

 routingFile = "node1_10.irt";

 parameters if (index+clients_net1+voip_clients)

==10:

 routingFile = "node1_11.irt";

 parameters if (index+clients_net1+voip_clients)

==11:

 routingFile = "node1_12.irt";

 parameters if (index+clients_net1+voip_clients)

==12:

233

 routingFile = "node1_13.irt";

 parameters if (index+clients_net1+voip_clients)

==13:

 routingFile = "node1_14.irt";

 parameters if (index+clients_net1+voip_clients)

==14:

 routingFile = "node1_15.irt";

 parameters if (index+clients_net1+voip_clients)

==15:

 routingFile = "node1_16.irt";

 parameters if (index+clients_net1+voip_clients)

==16:

 routingFile = "node1_17.irt";

 parameters if (index+clients_net1+voip_clients)

==17:

 routingFile = "node1_18.irt";

 parameters if (index+clients_net1+voip_clients)

==18:

 routingFile = "node1_19.irt";

 parameters if (index+clients_net1+voip_clients)

==19:

 routingFile = "node1_20.irt";

 parameters if (index+clients_net1+voip_clients)

==20:

 routingFile = "node1_21.irt";

 parameters if (index+clients_net1+voip_clients)

==21:

234

 routingFile = "node1_22.irt";

 parameters if (index+clients_net1+voip_clients)

==22:

 routingFile = "node1_23.irt";

 parameters if (index+clients_net1+voip_clients)

==23:

 routingFile = "node1_24.irt";

 parameters if (index+clients_net1+voip_clients)

==24:

 routingFile = "node1_25.irt";

 gatesizes:

 in[1],

 out[1];

 display: "p=40,100,row;i=comp";

 router1: Router;

 parameters:

 // network parameters

 numOfPorts =

1+voip_clients+clients_net1+clients_net2,

 routingFile = "router1.irt";

 gatesizes:

in[1+voip_clients+clients_net1+clients_net2],

out[1+voip_clients+clients_net1+clients_net2];

235

 display: "p=140,220;i=ipc";

 router2: Router;

 parameters:

 // network parameters

 numOfPorts =

1+voip_clients+clients_net1+clients_net2,

 routingFile = "router2.irt";

 gatesizes:

in[1+voip_clients+clients_net1+clients_net2],

out[1+voip_clients+clients_net1+clients_net2];

 display: "p=140,280;i=ipc";

 wred1: wredBox;

 parameters:

 win = 2s, //window size for bw calcs

 bw_max = input(42000, "Max amount of bw to

allocate to high pri traffic: ");

 display: "b=16,15;p=100,250;i=bwxcon_s";

 wred2: wredBox;

 parameters:

 win = 2s, //window size for bw calcs

 bw_max = input(42000, "Max amount of bw to

allocate to high pri traffic: ");

 display: "b=16,15;p=180,250;i=bwxcon_s";

236

 connections nocheck:

 for i=1..voip_clients do //network 1

 voipclient1[i-1].out[0] --> ine1[i-1].plainIn;

 ine1[i-1].cypherOut --> router1.in[i];

 router1.out[i] --> ine1[i-1].cypherIn;

 ine1[i-1].plainOut --> voipclient1[i-1].in[0];

 endfor;

 for i=1..voip_clients do //network 2

 voipclient2[i-1].out[0] --> ine2[i-1].plainIn;

 ine2[i-1].cypherOut --> router2.in[i];

 router2.out[i] --> ine2[i-1].cypherIn;

 ine2[i-1].plainOut --> voipclient2[i-1].in[0];

 endfor;

 for i=1..clients_net1 do //network 1

 tcpclient1[i-1].out[0] -->

router1.in[i+voip_clients];

 tcpserver1[i-1].out[0] -->

router2.in[i+clients_net2+voip_clients];

 router1.out[i+voip_clients] --> tcpclient1[i-

1].in[0];

 router2.out[i+clients_net2+voip_clients] -->

tcpserver1[i-1].in[0];

237

 endfor;

 for i=1..clients_net2 do //network 2

 tcpclient2[i-1].out[0] -->

router2.in[i+voip_clients];

 tcpserver2[i-1].out[0] -->

router1.in[i+clients_net1+voip_clients];

 router2.out[i+voip_clients] --> tcpclient2[i-

1].in[0];

 router1.out[i+clients_net1+voip_clients] -->

tcpserver2[i-1].in[0];

 endfor;

 router1.out[0] --> wred1.qIn;

 wred1.qOut --> datarate sat_datarate error

sat_error delay sat_delay --> wred2.passIn;

 wred2.passOut --> router2.in[0];

 router2.out[0] --> wred2.qIn;

 wred2.qOut --> datarate sat_datarate error

sat_error delay sat_delay --> wred1.passIn;

 wred1.passOut --> router1.in[0];

endmodule

network directnw : slow

238

endnetwork

filename: omnetpp.ini

ini file for slow.ned

author: James Knoll

[General]

preload-ned-files = *.ned ../mynodes/*.ned

@c:/home/IPSuite/nedfiles.lst ;ned files to load

dynamically

network = directnw

total-stack-kb=7535

sim-time-limit = 10m ;maximum simulation time to run

simulation

cpu-time-limit= 30m ;maximum clock time to run simulation

random-seed = 1 ;seed for random numbers

snapshot-file = tcpip.sna ;file to output snapshots to

;output-vector-file = tcpip.vec ;file to output vectors

[Cmdenv]

runs-to-execute=1-4 ;runs to execute using cmd environment

express-mode = yes ;run in express mode

239

status-frequency=100000 ;frequency for status messages

[Tkenv]

default-run=1 ;run to execute for TK environment

[OutVectors]

;*.interval = 10s ;delay before starting to record data

#voip and traffic vectors

*.delay_time.enabled = no

*.receive_rate.enabled = no

*.inst_rec_rate.enabled = no

*.send_rate.enabled = no

*.inst_send_rate.enabled = no

*.jitter.enabled = no ;jitter in voip apps

#tcp client vectors

*.Send No.enabled = no

*.TCP delay.enabled = no

*.Rec No.enabled = no

*.Rec Seq No.enabled = no

*.Cwnd size.enabled = no

*.Goodput.enabled = no

*.Avg_Goodput.enabled = no

*.Rec_Bits.enabled = no

#wred vectors

240

*.LP_BW.enabled = no

*.HP_BW.enabled = yes

*.HPQ_size.enabled = no

*.LPQ_size.enabled = no

[Parameters]

#connections

*.sat_datarate = 64000 ;data rate of satellite connection

*.sat_error = 0 ;satellite BER

*.sat_delay = 500ms ;delay in satellite link

#traffic

*.msg_length = 11200 ;length of a message in bits

*.traffic_rate = 64000 ;rate of transmission

voip app configuration

*.voip_clients = 3 ;number of voip clients

*.voice_length = 30s ;length of a voice burst

;*.voipclient1[0].initiate = true ;does this client

initiate the conversation

*.voipclient2[0].initiate = false

;*.voipclient1[1].initiate = true

*.voipclient2[1].initiate = false

;*.voipclient1[2].initiate = true

*.voipclient2[2].initiate = false

241

*.voipclient1[3].initiate = false

*.voipclient2[3].initiate = false

*.voipclient1[0].codec_rate = 5300 ;data rate for voip

client

*.voipclient2[0].codec_rate = 5300

*.voipclient1[1].codec_rate = 5300

*.voipclient2[1].codec_rate = 5300

*.voipclient1[2].codec_rate = 16000

*.voipclient2[2].codec_rate = 16000

*.voipclient1[3].codec_rate = 16000

*.voipclient2[3].codec_rate = 16000

*.reply_delay = 4s ;delay before sending a reply

*.frame_size = 140ms ;size of a frame

*.init_delay = 4s ;delay before first burst

*.talk_cycle = 50 ;percent off hook

*.call_length = 30m ;length of a call

#wredbox

*.bw_max = 48000 ;48 for 64k and 75 for 128k

*.hpq_min_thresh = 40 ;when to start random drop

*.hpq_max_thresh = 64 ;max drop

*.hpq_mpd = 10 ;percent to drop

*.lpq_min_thresh = 20 ;when to start random drop

*.lpq_max_thresh = 34 ;max drop

*.lpq_mpd = 10 ;percent to drop

242

*.max_q_len = 64 ;max queue depth

*.n = .01 ;weighting factor

TCP

;*.clients_net1 = 2 ;number of tcp clients in network 1

*.clients_net2 = 0 ;number of tcp clients in network 2

*.mss=1400 ;maximum segment size

*.tcp.debug=true ;debug on

*.message_length = 64000000 ;length of message to transmit

processing delays for all nodes

*.preRouting.procdelay = 0

*.routing.procdelay = 0.2 us

*.localDeliver.procdelay = 1 us

*.send.procdelay = 0.5 us

*.fragmentation.procdelay = 0.1 us

*.icmp.procdelay = 0

*.tunneling.procdelay = 0

*.multicast.procdelay = 0

.output[].procdelay = 0.2 us

*.inputQueue.procdelay = 0.1 us

*.networkInterface.procdelay = 0

hook names

243

*.qosBehaviorClass = "EnqueueWithoutQoS" ;only hook

currently implemented in IPSuite

#configuration changes between runs

[Run 1]

*.clients_net1 = 3

*.voipclient1[0].initiate = false

*.voipclient1[1].initiate = false

*.voipclient1[2].initiate = true

output-vector-file = tcpip1.vec

[Run 2]

*.clients_net1 = 18

*.voipclient1[0].initiate = false

*.voipclient1[1].initiate = false

*.voipclient1[2].initiate = true

output-vector-file = tcpip2.vec

[Run 3]

*.clients_net1 = 1

*.voipclient1[0].initiate = true

*.voipclient1[1].initiate = true

*.voipclient1[2].initiate = true

output-vector-file = tcpip3.vec

244

[Run 4]

*.clients_net1 = 3

*.voipclient1[0].initiate = false

*.voipclient1[1].initiate = false

*.voipclient1[2].initiate = false

output-vector-file = tcpip4.vec

//---

// file: trades.ned

// author: James Knoll

//

// Date: 31 May, 2004

//

// A simple voip network to test the amount of data

// throughput with varying voip configurations. The UDP

// application provides network traffic that can be

// adjusted with the data rate. The number of voip nodes

// is currently limited to 12, but this can easily be

// expanded. Runs are configured to vary the call cycle

// for each configuration to examine how the configuration

// compares against the standard 32k of data.

//---

import

 "Router",

245

 "TCPClientNode",

 "TCPServerNode",

 "voipUDPHost",

 "INE",

 "wredBox";

module trades

 parameters:

 voip_clients: numeric const, //number of voip pairs

 sat_datarate : numeric const, //satellite data rate

 sat_error : numeric const, //satellite BER

 sat_delay : numeric const; //satellite delay

 submodules:

 voipclient1: voipUDPHost [voip_clients];

 parameters:

 local_port = 100,

 dest_port = 200,

 // Voice parameters

 voice_length = input(30s, "Length of voice

transmission: "),

 initiate = input(false, "Initiate

conversation? "),

 codec_rate = input(64000, "CODEC stream

rate: "),

246

 reply_delay = input(4s, "Time to delay

before replying to a voice burst: "),

 frame_size = input(20ms, "Length of a

frame: "),

 // network parameters

 numOfPorts = 1;

 parameters if index==0:

 local_addr = "10.0.0.2",

 dest_addr = "10.0.3.2",

 routingFile = "node1_2.irt";

 parameters if index==1:

 local_addr = "10.0.0.3",

 dest_addr = "10.0.3.3",

 routingFile = "node1_3.irt";

 parameters if index==2:

 local_addr = "10.0.0.4",

 dest_addr = "10.0.3.4",

 routingFile = "node1_4.irt";

 parameters if index==3:

 local_addr = "10.0.0.5",

 dest_addr = "10.0.3.5",

 routingFile = "node1_5.irt";

 parameters if index==4:

 local_addr = "10.0.0.6",

 dest_addr = "10.0.3.6",

247

 routingFile = "node1_6.irt";

 parameters if index==5:

 local_addr = "10.0.0.7",

 dest_addr = "10.0.3.7",

 routingFile = "node1_7.irt";

 parameters if index==6:

 local_addr = "10.0.0.8",

 dest_addr = "10.0.3.8",

 routingFile = "node1_8.irt";

 parameters if index==7:

 local_addr = "10.0.0.9",

 dest_addr = "10.0.3.9",

 routingFile = "node1_9.irt";

 parameters if index==8:

 local_addr = "10.0.0.10",

 dest_addr = "10.0.3.10",

 routingFile = "node1_10.irt";

 parameters if index==9:

 local_addr = "10.0.0.11",

 dest_addr = "10.0.3.11",

 routingFile = "node1_11.irt";

 parameters if index==10:

 local_addr = "10.0.0.12",

 dest_addr = "10.0.3.12",

 routingFile = "node1_12.irt";

248

 gatesizes:

 in[1],

 out[1];

 display: "p=40,160,row;i=pc";

 ine1: INE [voip_clients];

 display: "p=40,200,row;i=ipc";

 voipclient2: voipUDPHost [voip_clients];

 parameters:

 local_port = 200,

 dest_port = 100,

 // Voice parameters

 voice_length = input(30s, "Length of voice

transmission: "),

 initiate = input(false, "Initiate

conversation? "),

 codec_rate = input(64000, "CODEC stream

rate: "),

 reply_delay = input(4s, "Time to delay

before replying to a voice burst: "),

 frame_size = input(20ms, "Length of a

frame: "),

 // network parameters

 numOfPorts = 1;

 parameters if index==0:

 local_addr = "10.0.3.2",

 dest_addr = "10.0.0.2",

249

 routingFile = "node2_2.irt";

 parameters if index==1:

 local_addr = "10.0.3.3",

 dest_addr = "10.0.0.3",

 routingFile = "node2_3.irt";

 parameters if index==2:

 local_addr = "10.0.3.4",

 dest_addr = "10.0.0.4",

 routingFile = "node2_4.irt";

 parameters if index==3:

 local_addr = "10.0.3.5",

 dest_addr = "10.0.0.5",

 routingFile = "node2_5.irt";

 parameters if index==4:

 local_addr = "10.0.3.6",

 dest_addr = "10.0.0.6",

 routingFile = "node2_6.irt";

 parameters if index==5:

 local_addr = "10.0.3.7",

 dest_addr = "10.0.0.7",

 routingFile = "node2_7.irt";

 parameters if index==6:

 local_addr = "10.0.3.8",

 dest_addr = "10.0.0.8",

 routingFile = "node2_8.irt";

250

 parameters if index==7:

 local_addr = "10.0.3.9",

 dest_addr = "10.0.0.9",

 routingFile = "node2_9.irt";

 parameters if index==8:

 local_addr = "10.0.3.10",

 dest_addr = "10.0.0.10",

 routingFile = "node2_10.irt";

 parameters if index==9:

 local_addr = "10.0.3.11",

 dest_addr = "10.0.0.11",

 routingFile = "node2_11.irt";

 parameters if index==10:

 local_addr = "10.0.3.12",

 dest_addr = "10.0.0.12",

 routingFile = "node2_12.irt";

 gatesizes:

 in[1],

 out[1];

 display: "p=40,340,row;i=pc";

 ine2: INE [voip_clients];

 display: "p=40,300,row;i=ipc";

 trafficclient1: trafficUDPHost;

 parameters:

251

 local_addr = "10.0.0.1",

 dest_addr = "10.0.3.1",

 local_port = 400,

 dest_port = 500,

 msg_length = input(12000, "Maximum payload

length(bits): "), //1500 bytes

 start_delay = false,

 traffic_rate = input(64000, "Traffic stream

rate: "),

 // network parameters

 numOfPorts = 1,

 routingFile = "node1_1.irt";

 gatesizes:

 in[1],

 out[1];

 display: "p=140,100,row;i=pc";

 trafficclient2: trafficUDPHost;

 parameters:

 // UDP parameters

 local_addr = "10.0.3.1",

 dest_addr = "10.0.0.1",

 local_port = 400,

 dest_port = 500,

 msg_length = input(1500, "Maximum payload

length: "),

252

 // traffic parameters

 start_delay = false,

 traffic_rate = input(64000, "traffic stream

rate: "),

 // network parameters

 numOfPorts = 1,

 routingFile = "node2_1.irt";

 gatesizes:

 in[1],

 out[1];

 display: "p=140,420,row;i=pc";

 router1: Router;

 parameters:

 // network parameters

 numOfPorts = 2+voip_clients,

 routingFile = "router1.irt";

 gatesizes:

 in[2+voip_clients],

 out[2+voip_clients];

 display: "p=140,220;i=ipc";

 router2: Router;

 parameters:

 // network parameters

 numOfPorts = 2+voip_clients,

253

 routingFile = "router2.irt";

 gatesizes:

 in[2+voip_clients],

 out[2+voip_clients];

 display: "p=140,280;i=ipc";

 wred1: wredBox;

 parameters:

 win = 2s,

 bw_max = input(48000, "Max amount of bw to

allocate to high pri traffic: ");

 display: "b=16,15;p=100,250;i=bwxcon_s";

 wred2: wredBox;

 parameters:

 win = 2s,

 bw_max = input(48000, "Max amount of bw to

allocate to high pri traffic: ");

 display: "b=16,15;p=180,250;i=bwxcon_s";

 connections nocheck:

 for i=1..voip_clients do //network 1

 voipclient1[i-1].out[0] --> ine1[i-1].plainIn;

 ine1[i-1].cypherOut --> router1.in[i+1];

 router1.out[i+1] --> ine1[i-1].cypherIn;

254

 ine1[i-1].plainOut --> voipclient1[i-1].in[0];

 endfor;

 for i=1..voip_clients do //network 2

 voipclient2[i-1].out[0] --> ine2[i-1].plainIn;

 ine2[i-1].cypherOut --> router2.in[i+1];

 router2.out[i+1] --> ine2[i-1].cypherIn;

 ine2[i-1].plainOut --> voipclient2[i-1].in[0];

 endfor;

 trafficclient1.out --> router1.in[1];

 trafficclient1.in <-- router1.out[1];

 trafficclient2.out --> router2.in[1];

 trafficclient2.in <-- router2.out[1];

 router1.out[0] --> wred1.qIn;

 wred1.qOut --> datarate sat_datarate error sat_error

delay sat_delay --> wred2.passIn;

 wred2.passOut --> router2.in[0];

 router2.out[0] --> wred2.qIn;

 wred2.qOut --> datarate sat_datarate error sat_error

delay sat_delay --> wred1.passIn;

 wred1.passOut --> router1.in[0];

255

endmodule

network directnw : trades

endnetwork

filename: omnetpp.ini

ini file for trades.ned

author: James Knoll

[General]

preload-ned-files = *.ned ../mynodes/*.ned

@c:/home/IPSuite/nedfiles.lst ;ned files to load

dynamically

network = directnw

total-stack-kb=7535

sim-time-limit = 1h ;maximum simulation time to run

simulation

cpu-time-limit= 30m ;maximum clock time to run simulation

random-seed = 1 ;seed for random numbers

snapshot-file = trades.sna ;file to output snapshots to

;output-vector-file = trades.vec ;file to output vectors

256

[Cmdenv]

runs-to-execute=1-10 ;runs to execute using cmd

environment

express-mode = yes ;run in express mode

status-frequency=100000 ;frequency for status messages

[Tkenv]

default-run=1 ;run to execute for TK environment

[OutVectors]

*.interval = 1000s ;delay before starting to record data

#voip

*.delay_time.enabled = no

.voipclient1[0]..receive_rate.enabled = no

.voipclient1[1]..receive_rate.enabled = no

.voipclient1[2]..receive_rate.enabled = no

.voipclient1[3]..receive_rate.enabled = no

.voipclient2[0]..receive_rate.enabled = no

.voipclient2[1]..receive_rate.enabled = no

.voipclient2[2]..receive_rate.enabled = no

.voipclient2[3]..receive_rate.enabled = no

.voipclient1[4]..receive_rate.enabled = no

.voipclient1[5]..receive_rate.enabled = no

.voipclient1[6]..receive_rate.enabled = no

.voipclient1[7]..receive_rate.enabled = no

257

.voipclient2[4]..receive_rate.enabled = no

.voipclient2[5]..receive_rate.enabled = no

.voipclient2[6]..receive_rate.enabled = no

.voipclient2[7]..receive_rate.enabled = no

.trafficclient1..receive_rate.enabled = no

.trafficclient2..receive_rate.enabled = yes

*.inst_rec_rate.enabled = no

*.send_rate.enabled = no

*.inst_send_rate.enabled = no

*.jitter.enabled = no ;jitter in voip apps

#tcp

;*.Send No.enabled = no

;*.TCP delay.enabled = no

;*.Rec No.enabled = no

;*.Rec Seq No.enabled = no

;*.Cwnd size.enabled = no

;*.Goodput.enabled = no

;*.Avg_Goodput.enabled = no

#wred

*.LP_BW.enabled = no

*.HP_BW.enabled = no

*.HPQ_size.enabled = no

*.LPQ_size.enabled = no

[Parameters]

258

#connections

*.sat_datarate = 64000 ;data rate of satellite connection

*.sat_error = 0 ;satellite BER

*.sat_delay = 500ms ;delay in satellite link

#traffic

*.msg_length = 11200 ;length of a message in bits

*.traffic_rate = 64000 ;rate of transmission

voip app configuration

*.voip_clients = 1 ;number of voip clients

*.voice_length = 3m ;length of a voice burst

;*.voipclient1[0].voice_length = 30s ;length when

silence suppression enabled

;*.voipclient1[1].voice_length = 3m

;*.voipclient1[2].voice_length = 3m

;*.voipclient1[3].voice_length = 3m

;*.voipclient2[0].voice_length = 30s

;*.voipclient2[1].voice_length = 3m

;*.voipclient2[2].voice_length = 3m

;*.voipclient2[3].voice_length = 3m

*.voipclient1[0].initiate = true ;does this client

initiate the conversation

*.voipclient2[0].initiate = false

*.voipclient1[1].initiate = true

259

*.voipclient2[1].initiate = false

*.voipclient1[2].initiate = true

*.voipclient2[2].initiate = false

*.voipclient1[3].initiate = true

*.voipclient2[3].initiate = false

*.voipclient1[4].initiate = true

*.voipclient2[4].initiate = false

*.voipclient1[5].initiate = true

*.voipclient2[5].initiate = false

*.voipclient1[6].initiate = true

*.voipclient2[6].initiate = false

*.voipclient1[7].initiate = true

*.voipclient2[7].initiate = false

*.voipclient1[0].codec_rate = 16000 ;data rate for voip

client

*.voipclient2[0].codec_rate = 16000

*.voipclient1[1].codec_rate = 16000

*.voipclient2[1].codec_rate = 16000

*.voipclient1[2].codec_rate = 5300

*.voipclient2[2].codec_rate = 5300

*.voipclient1[3].codec_rate = 5300

*.voipclient2[3].codec_rate = 5300

*.voipclient1[4].codec_rate = 5300

*.voipclient2[4].codec_rate = 5300

*.voipclient1[5].codec_rate = 5300

260

*.voipclient2[5].codec_rate = 5300

*.voipclient1[6].codec_rate = 5300

*.voipclient2[6].codec_rate = 5300

*.voipclient1[7].codec_rate = 5300

*.voipclient2[7].codec_rate = 5300

*.reply_delay = 4s ;delay before sending a reply

*.frame_size = 140ms ;size of a frame

*.init_delay = 0s ;delay before first burst

;*.talk_cycle = 50 ;percent off hook

*.call_length = 30m ;length of a call

#wredbox

*.bw_max = 48000 ;48 for 64k and 75 for 128k

*.hpq_min_thresh = 40 ;when to start random drop

*.hpq_max_thresh = 64 ;max drop

*.hpq_mpd = 10 ;percent to drop

*.lpq_min_thresh = 20 ;when to start random drop

*.lpq_max_thresh = 34 ;max drop

*.lpq_mpd = 10 ;percent to drop

*.max_q_len = 64 ;max queue depth

*.n = .01 ;weighting factor

TCP

;*.clients_net1 = 2 ;number of tcp clients in network 1

*.clients_net2 = 0 ;number of tcp clients in network 2

261

*.mss=1400 ;maximum segment size

*.tcp.debug=true ;debug on

*.message_length = 64000000 ;length of message to transmit

processing delays for all nodes

*.preRouting.procdelay = 0

*.routing.procdelay = 0.2 us

*.localDeliver.procdelay = 1 us

*.send.procdelay = 0.5 us

*.fragmentation.procdelay = 0.1 us

*.icmp.procdelay = 0

*.tunneling.procdelay = 0

*.multicast.procdelay = 0

.output[].procdelay = 0.2 us

*.inputQueue.procdelay = 0.1 us

*.networkInterface.procdelay = 0

hook names

*.qosBehaviorClass = "EnqueueWithoutQoS" ;only hook

currently implemented in IPSuite

#configuration changes between runs

[Run 1]

*.talk_cycle = 100

output-vector-file = trades1.vec

262

[Run 2]

*.talk_cycle = 90

output-vector-file = trades2.vec

[Run 3]

*.talk_cycle = 80

output-vector-file = trades3.vec

[Run 4]

*.talk_cycle = 70

output-vector-file = trades4.vec

[Run 5]

*.talk_cycle = 60

output-vector-file = trades5.vec

[Run 6]

*.talk_cycle = 50

output-vector-file = trades6.vec

[Run 7]

*.talk_cycle = 40

output-vector-file = trades7.vec

263

[Run 8]

*.talk_cycle = 30

output-vector-file = trades8.vec

[Run 9]

*.talk_cycle = 20

output-vector-file = trades9.vec

[Run 10]

*.talk_cycle = 10

output-vector-file = trades10.vec

264

THIS PAGE INTENTIONALLY LEFT BLANK

265

BIBLIOGRAPHY

Black, Uyless. Voice over IP. Upper Saddle River, New Jersey:

Prentice Hall PTR, 2000.

Barsaleau, Dean A. & Tummala, Murali. QoS Testing of the ADNS

Increment II Architecture. Presentation at May, 2004 Navy

Quality of Service (QoS) Working Group.

Buddenburg, Rex. Radio-WAN Building. May 2003. Available from

http://web1.nps.navy.mil/~budden/lecture.notes/r-wan/radio-

WAN_building.html (Last accessed June 2004)

Caputo, Robert. Cisco Packetized Voice & Data Integration. New

York: McGraw-Hill, 2000.

Casey, Rodger. Black Routing Configuration For IPv4 And

Transition Approach Rev 2. February, 2004. Retrieved from

https://vpo.spawar.navy.mil/pd-17/pmw-179-2/adns/

documents.nsf/titlelibrarydoc/black-core+transition/$file/

Black+ (Last accessed June 2004)

Davidson, Jonathan & Peters, James. Voice over IP Fundamentals.

Indianapolis, Indiana: Cisco Press, 2000.

Deering, S. & Hinden, R. RFC 2460: IPv6 Specification. December

1998 Available from http://www.ietf.org/rfc/rfc2460.txt

(Last accessed June 2004)

Defense Information Systems Agency/Joint Interoperability Test

Center (DISA/JITC) APPENDIX 3 GENERIC SWITCHING CENTER

REQUIREMENTS (GSCR) 08 SEP 03 DSN VOICE OVER INTERNET

PROTOCOL (VOIP) REQUIREMENTS. Retrieved from

http://jitc.fhu.disa.mil/tssi/cert_pdfs/gscr_apdx3_dec03.pd

f (Last accessed June 2004)

266

Farley, Tom. Tom Farley's Telephone History Series. 1998-2004

Available from http://www.privateline.com/TelephoneHistory/
History1.htm (Last accessed June 2004)

Gomaa, Hassan. Designing Concurrent, Distributed, and Real-Time

Applications with UML. New York: Addison-Wesley, 2000.

Hucke, Ed, Nguyen, Quang, Teng, Weden, Goodrich, Callis, Bart,

Ron, Wadler, Andrew, Arendale, Ron, Et. al. Analysis of

Quintum Tenor Vocoding for Support for Secure Voice.

November 2003. Retrieved from

https://vpo.spawar.navy.mil/pd-17/pmw-179-2/adns/

documents.nsf/titlelibrarydoc/voip+trunking+w/secure+voice/

$file/Quinti (Last accessed June 2004)

Miller, Mark A. Voice over IP Technologies: Building the

Converged Network. New York, NY: M&T Books, 2002.

Schilke, Andreas. (1997, June). TCP over Satellite Links.

Seminar ``Broadband Networking Technology''

http://www.tkn.tu-berlin.de/curricula/ss97/bnt97/

schilke.html (Last accessed June 2004)

267

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Deborah Goldsmith
Navy QoS WG
San Diego, California

4. Jessie Rubalcava
Automated Digital Networking System (ADNS)
San Diego, California

